
Dual Streaming for Hardware-Accelerated Ray Tracing
Konstantin Shkurko

University of Utah
Tim Grant

University of Utah
Daniel Kopta

University of Utah

Ian Mallett
University of Utah

Cem Yuksel
University of Utah

Erik Brunvand
University of Utah

Streaming
Processor

Memory Controller

Stream
Scheduler

Scene Hit Record L2
CacheUpdater

...

Bu�er

Main Memory

TM TM TM TM TM TM

TM TM TM TM TM TM

TM TM TM TM TM TM

Instruction
Cache

Ray-Box
Intersectors

Ray-Triangle
Intersectors

TPs: Thread
Processors

TPs: Thread
Processors

Execution
Units

L1 Cache

Thread MultiprocessorTM:
Ray Data

Scene Data
Hit Records

Other Data

Hit Record Updater

Hit Record File Compare, Fetch Logic

TMs

Scene
Bu�er

Ray Read Q Ray Write Q Meta Data Pre Fetch Q

Ray Stream
Logic

Scheduling
Logic

Scene Stream
Logic

TMs

Stream Scheduler

Figure 1: Overview of our dual streaming architecture. Lines connecting hardware modules indicate the flow of data colored by its type:
(red) ray data, (blue) scene data, (black) hit records, and (green) other data. The streaming processor uses many Thread Multiprocessors
(TMs) for computation, which share chip-wide stream units. A TM combines many lightweight hardware thread processors (TPs) that share
instruction cache and computation units.

ABSTRACT
Hardware acceleration for ray tracing has been a topic of great in-
terest in computer graphics. However, even with proposed custom
hardware, the inherent irregularity in the memory access pattern
of ray tracing has limited its performance, compared with raster-
ization on commercial GPUs. We provide a different approach to
hardware-accelerated ray tracing, beginning with modifying the
order of rendering operations, inspired by the streaming charac-
ter of rasterization. Our dual streaming approach organizes the
memory access of ray tracing into two predictable data streams.
The predictability of these streams allows perfect prefetching and
makes the memory access pattern an excellent match for the be-
havior of DRAM memory systems. By reformulating ray tracing
as fully predictable streams of rays and of geometry we alleviate
many long-standing problems of high-performance ray tracing and
expose new opportunities for future research. Therefore, we also in-
clude extensive discussions of potential avenues for future research
aimed at improving the performance of hardware-accelerated ray
tracing using dual streaming.

e-mail:{kshkurko, tgrant, dkopta, imallett, cem, elb}@cs.utah.edu.
HPG ’17, July 28-30, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
HPG ’17, July 28-30, 2017 , https://doi.org/10.1145/3105762.3105771.

CCS CONCEPTS
• Computer systems organization → Multiple instruction,
multiple data; • Computing methodologies→ Graphics pro-
cessors; Ray tracing;

KEYWORDS
Raytracing hardware
ACM Reference format:
Konstantin Shkurko, Tim Grant, Daniel Kopta, Ian Mallett, Cem Yuksel,
and Erik Brunvand. 2017. Dual Streaming for Hardware-Accelerated Ray
Tracing. In Proceedings of HPG ’17, Los Angeles, CA, USA, July 28-30, 2017,
11 pages.
https://doi.org/10.1145/3105762.3105771

1 INTRODUCTION
The two popular approaches to rendering, rasterization and ray
tracing, differ in the way they process a 3D scene. While rasteriza-
tion can stream the scene data (e.g. triangles), ray tracing accesses
only the necessary portion of the scene using hierarchical accelera-
tion structures. Since the theoretical complexity of ray tracing is
sub-linear in scene size, it has been anticipated for decades that ray
tracing would perform faster than rasterization, which has linear
complexity dependence on scene size, when the regularly growing
average scene size reaches a certain point. However, from the point
of view of the memory system, data accesses driven by acceleration
structures (used by ray tracing) look more random than those of
a triangle stream (used by rasterization). Because data movement
can be the primary performance limitation and energy consumer

https://doi.org/10.1145/3105762.3105771
https://doi.org/10.1145/3105762.3105771

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA K. Shkurko et al.

in modern computing systems, the random access to the scene data
has so far prevented ray tracing from reaching its theoretical po-
tential. It appears unlikely that ray tracing will ever outperform
rasterization without making its scene access pattern a better match
for the memory system hardware.

Streamed memory accesses improve performance and energy
use for at least three reasons: 1) data streaming relieves the proces-
sor of address calculation tasks and pointer chasing for traversal
of tree-like data structures, 2) streaming helps hide memory la-
tency via prefetching, and 3) the circuit-level architecture of the
Dynamic Random Access Memory (DRAM) chips that make up
main memory is designed for streaming. Each access to DRAM will
stream contiguous data across the memory interface (typically a
cache line at minimum), and internally DRAM chips provide fast
and low-energy access to even larger blocks of contiguous data.

In this paper, we introduce the dual streaming approach for ray
traversal, which reorders the traditional ray tracing algorithm to
make it more suitable for hardware acceleration, considering DRAM
behavior. Since dual streaming is not designed for general-purpose
processors, we also describe the first custom hardware architecture
implementation, outlined in Figure 1.

Our dual streaming approach organizes the memory access pat-
tern of ray tracing into two predictable and prefetch-friendly data
streams: one for scene data and one for ray data. Therefore, we
pose ray tracing, for the first time, in a fully streamed formulation,
reminiscent of rasterization. The scene stream consists of the scene
geometry data (including the acceleration structure) that is split
into multiple segments. The ray stream consists of all rays in flight
collected as a queue per scene segment they intersect. Our sched-
uler prefetches a scene segment and its corresponding ray queue
from main memory into on-chip buffers before they are needed
for traversal (i.e. perfect prefetching). Hence, the compute units no
longer access the main memory directly. Rays at the same depth
are traced as a wavefront, so each additional bounce requires an
additional pass. A predictable scene traversal order ensures that
each scene segment is streamed at most once per wavefront. Thus,
we regularize the memory traffic for scene data and reduce it to its
absolute minimum.

Dual streaming provides a new ray traversal order that resolves
some of the decades-old problems of high-performance ray tracing:
• Random access to main memory during traversal is avoided. All
necessary scene and ray data are streamed on chip beforehand.

• Scene data traffic from main memory is minimized. Since each
scene segment is streamed at most once per wavefront, memory
bandwidth is not wasted by fetching the same data several times.
This is particularly important for large scenes and incoherent
rays (such as secondary rays).

• Memory latency is hidden by perfect prefetching. A traditional
solution hides memory latency by adding more threads, which
is effective only when the memory system can process their
requests fast enough. Instead, dual streaming hides latency by
perfectly predicting the next workload.

• Thememory access pattern for each stream fits howDRAM operates.
This results in extremely high row buffer hit rates, minimizing
DRAM operations needed to access the requested data. Thus,
DRAM chips process requests faster and at lower energy, further
resulting in better bandwidth utilization.

Notice that all of these improvements relate to the memory system,
since traditional ray tracing, especially for large scenes, can be
bound by memory rather than compute. Data movement is also the
main culprit for energy use. Therefore, all of these outcomes are crit-
ical to addressing the traditional problems with high-performance
ray tracing in terms of both rendering speed and energy use.

On the other hand, dual streaming exposes new challenges and
restrictions. First, to maximize scene reuse, all rays in flight are
stored in and streamed from the main memory, instead of just
a small number being stored (and processed) on chip. Although
streaming rays from DRAM is highly efficient, fetching rays in-
troduces additional load on main memory, which we found to be
offset by the reduction in scene traffic for most scenes. Secondly,
our implementation of the predictable traversal order requires some
rays to be duplicated. Even though the duplication eliminates the
need to store a traversal stack per ray, it still puts extra pressure on
the memory system, in terms of both storage and bandwidth, and
requires atomic hit record updates. Finally, unlike traditional ray
tracing, implementing efficient early ray termination and optimiz-
ing the ray traversal order with dual streaming is nontrivial.

Contributions: We introduce dual streaming, which is, to our
knowledge, the first ray tracing method that is completely predic-
tive in terms of accessing both scene and ray data and allows perfect
prefetching ahead of computation using two separate streams. We
describe the first custom hardware architecture accelerating dual
streaming and evaluate it using cycle-accurate hardware simulation
to present the advantages and current limitations of our implemen-
tation. We explore only a fraction of the potential design space
that could exploit the predictable traversal structure of the dual
streaming approach. Yet, our results show that the initial hard-
ware architecture we describe is already competitive with other
state-of-the-art hardware acceleration for ray tracing, and has the
potential to improve that performance substantially, especially for
large scenes. Furthermore, we include an extensive discussion of
potential avenues for future research.

2 BACKGROUND
In this section, we provide a summary of recent work on improving
ray tracing memory behavior through both algorithmic improve-
ments and custom hardware designs. There is, of course, a large
body of work on enhancing other aspects of ray tracing, but we
focus specifically on memory issues.

Recent work has explored a variety of ways to leverage ray trac-
ing acceleration structures to increase scene data memory access
efficiency. Somemethodsmanipulate rays by clever generation [Pur-
cell et al. 2002; Wald et al. 2014], sorting [Bigler et al. 2006; Boulos
et al. 2007; Eisenacher et al. 2013; Moon et al. 2010; Pharr et al.
1997], or grouping [Barringer and Akenine-Möller 2014; Lee et al.
2015]. Other approaches find rays that access the same portions
of the BVH by splitting the BVH into treelets [Aila and Karras
2010; Navrátil et al. 2007]. Perhaps the most similar to our work
are the approaches that attempt to reorder rays or scene data into
stream-like memory accesses [Bikker 2012; Gribble and Ramani
2008; Wald et al. 2007]. The distinction of our approach is to make
the streams exactly predictable to allow for perfect prefetching.

Dual Streaming for Hardware-Accelerated Ray Tracing HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

One hardware approach to optimizing the memory behavior of
ray tracing has been to provide a special fixed-function traversal
unit as part of the processor [Kim et al. 2010, 2012; Lee et al. 2012;
Nah et al. 2014; Schmittler et al. 2002, 2004; Woop et al. 2006, 2005].
While effective in terms of speeding up the issuing of memory
requests, they both restrict the acceleration structures to one exact
type, and also do not necessarily reorder or repackage the memory
requests to take advantage of memory system organization. Other
approaches such as StreamRay [Gribble and Ramani 2008; Ramani
and Gribble 2009] provided a pre-filter operation to filter rays into
SIMD-friendly groups for processing. These filtered sets of rays
look like streams once they are assembled, but are not predictable
in advance to allow for effective prefetching. Most ray tracing spe-
cific hardware architectures assume a fairly standard cache/DRAM
hardware architecture and rely on the software to package ray and
scene data requests efficiently [Aila and Laine 2009; Aila et al. 2012;
Govindaraju et al. 2008; Kelm et al. 2009; Kopta et al. 2010; Spjut
et al. 2009, 2008], with some recent work specifically targeting com-
pression of the scene data to reduce memory bandwidth [Keely
2014; Liktor and Vaidyanathan 2016]. STRaTA [Kopta et al. 2013,
2015] is an architecture that assumes a slightly enhanced physical
memory architecture by adding on-chip ray queues to the memory
hierarchy. Because STRaTA stores rays just in on-chip buffers, it can
process only a limited number of rays simultaneously, restricting
shader complexity and treelet effectiveness. Nonetheless, because
of its focus on optimizing the DRAM access for at least the scene
data, we choose STRaTA as our primary comparison.

2.1 DRAMMain Memory Considerations
Main memory typically consists of large amounts of dynamic ran-
dom access memory (DRAM). Although relatively high-capacity
and affordable, DRAM is also notoriously complex in terms of ac-
cess behavior and characteristics, and relatively slow in terms of
access latency [Balasubramonian et al. 2000; Brunvand et al. 2014;
Chatterjee et al. 2012; Jacob et al. 2008; Kopta et al. 2015; Wulf
and McKee 1995]. In addition to being volatile, and thus needing
periodic refresh operations, the internal structure of DRAM chips
supports accessing data sized in cache line chunks, typically 64
bytes. Internally, every access fetches an entire row of data (up to
8KB) from one of the low-level memory circuit arrays into the row
buffer. Reading a row is destructive to the DRAM contents, and the
8KB in the static row buffer (across the set of chips activated for
each access) is then written back to the DRAM array in each chip
to restore the data.

An important behavior of the row buffer is that because it is
implemented as fast static memory, if the next 64B data access is
also within that 8KB row buffer, known as an open row access, then
that access is dramatically faster and more energy-efficient than if
the access requires opening a new row. In a sense, the row buffer
acts like an additional cache that lives across DRAM chips.

The memory controller is another critical piece of the DRAM
memory system because it interfaces between the (typically) 64B
memory requests from the processor and the complex DRAMmem-
ory. Aside from managing DRAM, the memory controller also ac-
cumulates data requests and reorders them based on which rows
they map to. This improves row buffer hit-rates but introduces

variability in access latency. A ray tracer carefully restructured
to improve memory access patterns during traversal can help the
memory controller increase the row buffer hit-rate, thus reducing
both DRAM latency and energy [Kopta et al. 2015]. Looking ahead,
accessing a contiguous stream of data comparable in size to a row
buffer can represent a best-case use of DRAM in terms of achievable
latency and power consumption.

3 DUAL STREAMING
The main goal of dual streaming is to eliminate the irregular ac-
cesses to the main memory and minimize scene data transfer by
reformulating ray tracing as two separate streams: a scene stream
and a ray stream.

The scene stream consists of multiple scene segments that collec-
tively form the entire scene geometry data and can be processed
separately. Segments are sized as a multiple of the DRAM row
buffer capacity to enable efficient streaming. Although most accel-
eration structures could be used to generate scene segments, our
implementation splits a BVH into treelets [Aila and Karras 2010],
each containing both internal and leaf nodes, as well as the scene
geometry (e.g. triangles).

The ray stream is the collection of all rays that are in flight,
split into multiple queues, one per scene segment. The ray stream
consists of basic ray information: origin, direction, and a ray index.
Since the scene segments are traversed independently, there is no
need to store a global traversal stack for each ray, significantly
reducing the overhead for ray state.

Throughout traversal, rays are added to the queues of scene
segments they need to visit, and are removed from the queues as the
associated segments are processed. Because our scene segmentation
is hierarchical, the ray queue for a given segment is filled when
traversing its parent segment, and is drained only after the parent
segment has been fully processed.

During ray traversal, both the scene segment data and its ray
queue are prefetched onto the chip, thereby eliminating the need
for random accesses to the main memory to fetch the required data.

The construction of scene segments dictates the fixed traversal
order based on how rays can flow from one segment to the next.
Tree-based segmentations (e.g. BVH treelets) impose a hierarchical
relationship between segments in which rays flow from a parent to
its children, but never from children to their parent. This eliminates
the need to reload scene segments, since rays are not allowed to
revisit segments.

The order in which segments are loaded may follow strict
breadth- or depth-first ordering, or may leverage run-time statistics,
like the distribution of rays among scene segments. Once all rays
finish traversing through a particular segment, its children become
available to be processed. If a segment’s ray queue is empty when
it is time to be processed, the segment (and all of its descendants)
can be safely skipped, since no rays visit that part of the scene.

All segments with non-empty ray queues are processed in paral-
lel. Moreover, rays from the same queue can be distributed between
different threads. Traversal ends when the ray queues for all scene
segments have been emptied. Due to the predefined traversal order,
each scene segment is processed (and therefore loaded) at most
once per wavefront (i.e. once per ray bounce).

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA K. Shkurko et al.

Within a segment, each ray follows a typical traversal using a
local stack. However, when a ray finds an exit point from the current
segment into one of its children, the ray does not immediately follow
the path. Instead, the ray is duplicated into the ray queue for the
child segment and continues traversal within the current segment
until all exit points are found. We apply early ray termination
locally: if a ray hits a triangle within the scene segment, it avoids
traversing any nodes and enqueuing into any child segments farther
than the hit. Ray duplication avoids reloading scene segments per
ray wavefront, because rays do not revisit the parent segment to
reach a sibling segment.

We maintain a shared hit record for each set of duplicate rays,
which must be updated each time an intersection is found. Since
the number of rays is very large, the hit records are stored in
DRAM rather than sent along with each ray. Updating the shared
hit records—and ray duplication in general—presents special chal-
lenges which we discuss in later sections.

Because rays can be duplicated, early ray termination becomes
non-trivial. When an intersection is found, there is no easy way
to check whether this distance is the global minimum, or if a du-
plicate ray being traced simultaneously in another scene segment
has found a closer hit. Testing which hit to keep requires atomic
access and updates of the shared hit record, handled by a dedicated
hardware unit discussed in Section 4.3.

Because the shared hit records are kept off-chip, early termina-
tion tests must access DRAM during traversal, potentially incoher-
ently. Although these accesses should get coalesced, threads could
stall waiting for the current hit distance to return from main mem-
ory. We consider two separate mechanisms: pre-test and post-test.
The pre-test checks the hit record before traversing a ray through
the current scene segment. The post-test checks the record after
traversal and before enqueueing into another segment.

4 HARDWARE ARCHITECTURE
Our hardware implementation of dual streaming is shown in Fig-
ure 1. The design follows the Single Program Multiple Data (SPMD)
paradigm, with independent control flow for each thread. The ar-
chitecture partitions a large number of Thread Processors (TPs)
into a number of Thread Multiprocessors (TMs) to allow TPs to
share units that are expensive in terms of area, like fixed-function
intersection units and ray staging buffers.

The complete streaming processor is built frommany TMs which
share access to several global units: the stream scheduler, the scene
buffer, and the hit record updater. These units connect to thememory
controller, which interfaces with off-chip DRAM. Figure 1 shows
details for these global units and Table 1 describes their areas.

Unlike a more typical architecture, our dual streaming imple-
mentation features no large L2 data caches. Instead, the chip area
is used for dedicated scene and ray buffers, which are essentially
large static random access memory (SRAM) scratchpads. Compared
to typical caches of similar capacity, such scratchpads are simpler
to implement, faster to access, and consume less energy per access.

4.1 Stream Scheduler
One of the key units in our implementation is the stream scheduler,
shown in Figure 1. The stream scheduler marshals the data required

for ray traversal to prevent TPs from accessing main memory di-
rectly for both scene and ray stream data. The stream scheduler
also tracks the current state of traversal, including the working set
of active scene segments, the mapping of TMs to scene segments,
and the status of the scene and ray streams.

As discussed in Section 3, the scene is partitioned into a num-
ber of segments which can be traversed independently. With the
exception of the first scene segment (e.g. the root treelet, in the
case of BVH treelets), scene segments become eligible for traversal
only after their parent has been traversed. When the traversal of
a scene segment is completed (i.e. its ray queue is depleted), the
stream scheduler replaces the scene segment with another. After
adding a scene segment to the working set, the stream scheduler
transfers the corresponding data from DRAM to the scene buffer.

Tracking scene segment streams incurs little overhead per seg-
ment: starting address and the number of cache lines transferred
so far. We have found that streaming eight segments simultane-
ously performs well, and requires modest area within the stream
scheduler: 40 bytes of storage and some counters.

Rays are partitioned into a number of queues, with one queue
per scene segment. While only a small subset of all active rays
can fit on chip, the rest are stored in DRAM until they can be
processed. Each ray queue is stored as a linked list of small pages,
called ray buckets. Within its header, each ray bucket stores the
next bucket’s address and a ray counter. Although some buckets
may be filled only partially, buckets maintain constant size and row
buffer alignment in DRAM. In our implementation four 2KB ray
buckets perfectly fit within an 8KB DRAM row buffer to leverage
the streaming behavior of DRAM.

Both scene segments and ray buckets are sized cognizant of
the DRAM row buffer, to make sure each stream is stored in main
memory as a continuous block, as shown in Figure 2.

TPs do not read rays directly from the queues. Instead, the stream
scheduler fetches entire ray buckets fromDRAM and forwards them
to the appropriate TM’s ray staging buffer. Similarly, TPs write rays
into queues via the stream scheduler, whichmaintains a small queue
of such requests. The stream scheduler drains the queue by writing
each ray into the appropriate ray bucket (stored in DRAM).

Since rays are written into the queues of child segments as they
exit their parent, the total number of potential write destinations
equals the total number of children of all segments currently in the
working set. Since segments can have many children, the number of
destinations can be large, and for some of our test scenes it reached
about a thousand. Maintaining pointers to the ray queues for such a
large number of segments—along with the metadata capturing the
parent-child and sibling relationships required for queue processing
and scheduling—requires approximately 16KB of SRAM.

Each TP fetches individual rays to be processed from one of
the ray staging buffers within its TM. There is no deterministic
mapping between TPs in a TM and rays within the staging buffer.
The staging buffer is sized to store exactly two ray buckets and is
split into two halves: while one is being drained by TPs, the stream
scheduler fills the other with another ray bucket from DRAM. Each
ray stores the address of the node it is traversing. The TPs use this
address to load scene data from L1, which accesses the scene buffer
on misses. The scene data is fed into TM-wide intersection pipelines
for traversal.

Dual Streaming for Hardware-Accelerated Ray Tracing HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Channel 0 Channel 1 Channel 2 Channel 3
DRAM

8 KB rows 64 KB treelets 2 KB ray buckets

Scene Segments Ray Bucket List per Segment

Figure 2: Layout of both streams in DRAM. Each scene segment (left) is placed contiguously in DRAM, including triangles. Ray stream
(right) consists of a linked list of buckets, which may be stored in a fragmented fashion. Note that the stream scheduler stores pointers to
scene segments and the first (head) ray bucket, depicted by dashed arrows.

After one half of a ray staging buffer runs out of rays, it is
swapped for the other half. The stream scheduler polls which stag-
ing buffers are empty, and attempts to find another ray bucket from
the same scene segment (to improve L1 cache reuse). If there are
no more buckets for the currently processed scene segment, the
scheduler attempts to find a ray bucket for a scene segment in the
working set. If there are no more ray buckets left for any of the
scene segments in the working set, the scheduler must wait for the
traversal of a scene segment to complete, before evicting it from
the working set and replacing it with another scene segment. To
select the next scene segment for inclusion in the working set, the
stream scheduler maintains a queue of segment IDs to be processed,
ordered by depth-first segment traversal.

4.2 Scene Buffer
The scene buffer is a global, on-chip memory that holds the scene
data for all scene segments currently in the working set. The scene
buffer hides access latency much like the last-level caches in more
traditional architectures, but operates simpler. Unlike a traditional
cache, the scene buffer is read-only and is managed entirely by the
stream scheduler, rather than responding to individual memory
access requests.TPs access scene segments only through the scene
buffer, which eliminates random access to DRAM for scene data.
Recently accessed scene data is retained in the L1 cache of each
TM, which reduces contention for the global scene buffer.

4.3 Hit Record Updater
The hit record updater is a unit that atomically updates the hit
records stored in DRAM. Duplicated rays share a common hit
record, requiring atomic updates whenever an intersection is found.
When a TP finds a hit, it sends an update request to the hit record
updater, which maintains a small on-chip queue of requests. If
there is an update pending for the given ray index (i.e. duplicate ray
found another hit), the closer of the two hits replaces the update;
otherwise, the request is added to the queue.The hit record updater
compares the hit distances to the values recorded in the DRAM and,
updates hit information in DRAM only if the pending hit is closer.
As long as the hit record updater queue is not full, TP execution is
not blocked. Despite our initial apprehension, we have not found
access to the hit record updater to be a bottleneck.

4.4 Comparison to STRaTA
Like STRaTA [Kopta et al. 2013, 2015] our hardware implemen-
tation uses the SPMD paradigm, utilizes fixed-function pipelines,
and relies on treelets as a means of accessing scene data. However,
beyond these similarities in basic components, which would be
present in any parallel hardware, our dual streaming hardware de-
sign bears little resemblance to STRaTA. First of all, dual streaming
fundamentally alters how data flows through the processor and how
it is accessed: perfect prefetching for dual streaming vs on-demand
cache loads for STRaTA. The traversal algorithm each architec-
ture implements is also fundamentally different: dual streaming
processes all rays within a given treelet before moving on to the
next in a fixed order, whereas STRaTA processes treelets in an
unknown order, on-demand as they fill with rays, and often some
rays re-entering treelets (thereby re-fetching the same scene data
from DRAM). Another fundamental difference is that dual stream-
ing traces wavefronts starting with the primary rays followed by
secondary rays in separate passes, organized into ray streams that
reside in DRAM. This enables many more rays in flight simultane-
ously, and combined with the deterministic traversal order, ensures
that any treelet is loaded at most once per pass. Even if STRaTA
was capable of spilling rays from on-chip queues into DRAM to
allow more rays in flight, its traditional depth-first traversal would
force it to (potentially) reload treelets many times. In comparison
to STRaTA, dual streaming uses a completely different scheduler
with different tasks, it contains a read-only scene buffer instead of
a large L2 cache, contains a dedicated hit record updater unit, and
relies on an input ray staging buffer per TM. In other words, any
similarity between the two architectures is limited to the design of
individual TPs and TMs and the fact that treelets are used to split
the scene data.

5 RESULTS
We use a cycle-accurate simulator to evaluate our dual streaming
architecture and we compare our results to STRaTA [Kopta et al.
2015], a state-of-the-art ray tracing specific architecture. The choice
of STRaTA for direct comparison is motivated by the fact that it
also aims to optimize DRAM accesses (though using a traditional
ray tracing paradigm) and thus we can design fair comparisons by
simulating similar hardware parameters. We also provide limited
comparisons against NVIDIA’s OptiX GPU ray tracer [Parker et al.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA K. Shkurko et al.

Table 1: Hardware Configuration

Dual Streaming STRaTA
Common System Parameters
Technology Node 65nm CMOS
Clock Rate 1GHz
DRAM Memory 4GB GDDR5
Total Threads 2048
On-Chip Memory
L2 Cache 512KB, 32 banks
On-Chip Ray Queues N.A. 4MB
Scene Buffer 4MB N.A.
TM Configuration
TPs / TM 16 16
L1 Cache 16KB, 8 banks 32KB, 8 banks
Ray Staging Buffer 2×2KB N.A.
Area (mm2)
Memory Controller 13.1 13.1
Scheduler 0.53 negligible
Caches / Buffers 190.4 159.7
Compute 57.1 57.1
Total 261.1 229.9

2010], and Intel’s Embree CPU ray tracer [Wald et al. 2014], running
on actual hardware.

In our comparisons we use no early termination for our dual
streaming hardware, but we do use early termination for STRaTA,
OptiX, and Embree. Therefore, our dual streaming hardware per-
forms substantially more work without the benefits of early ray
termination. Additionally, we provide results with STRaTA without
early termination for comparison. We present our test results with
early termination using dual streaming separately at the end of this
section.

5.1 Hardware Specifications
Table 1 lists the hardware configurations for both dual streaming
and STRaTA. On-chip cache and SRAM buffer areas are estimated
using Cacti 6.5 [Muralimanohar et al. 2007]. Compute resource areas
are estimated with synthesized versions of the circuits using Syn-
opsys DesignWare/Design Compiler. We did not fully synthesize
the logic circuitry for the memory controllers or the dual streaming
scheduler. Instead, the area consumed by memory controllers is
mostly dominated by its buffers and other SRAM components [Bo-
jnordi and Ipek 2012]. The dual streaming scheduler is similar to a
memory controller in terms of logic circuitry. Therefore, to make
conservative area estimates for the memory controller and sched-
uler, we assume the area of these units is 2× the size of the SRAM
components, which we model with Cacti. STRaTA’s scheduler is
reported as roughly zero area because its scheduling metadata is
contained entirely within the ray queue, which is already accounted
for. Since STRaTA has a much simpler scheduler, the additional
logic circuitry would be negligible in area. We do not include area
comparisons for Embree or OptiX, since STRaTA and dual stream-
ing are imagined as accelerators, not a full-system CPU/GPU, and
because the 65nm process technology we can simulate is much
larger than current technologies.

In all simulated test results we present, the processor runs at
1GHz and has 4MB of on-chip memory (used differently with
STRaTA and dual streaming), 128 thread multiprocessors each with
16 hardware threads (2048 threads total), each with 32 registers and
512B of local scratchpad memory. Note that this is a relatively mod-
erate configuration compared to currently available discrete GPU
hardware. Beyond these common parameters, hardware-specific
parameters are specified after numerous tests for finding an optimal
setup for each hardware design.

The global scene buffer for dual streaming is 4MB in size and
can store at most 64 treelets, each 64KB in size. Ray buckets are
2KB in size and store up to 64 rays. The sizes of these components
are chosen based on our experiments with different configurations.
Our earlier tests revealed that we can achieve slightly higher per-
formance for almost all scenes when the scene buffer size is 4MB, as
compared to 2MB. However, the optimal scene buffer size depends
on the number of TMs. Our tests with different ray buffer sizes
provided only slightly elevated performance for most scenes with
2KB, as compared to 1KB.

For the STRaTA results we use treelets of size 32KB, which pro-
duced the best performance in our tests. The on-chip memory for
STRaTA is split into a 512KB L2 cache and a 4MB ray buffer. The ex-
ecution units of the original STRaTA multiprocessors dynamically
reconfigure into either a ray-box or two ray-triangle intersection
pipelines. For a fair comparison to dual streaming, we generated the
STRaTA results using fixed-function pipelines, which have slightly
elevated performance.

The pipeline intersecting rays against boxes relies on inverted ray
directions [Williams et al. 2005]. Each TP uses the TM-wide shared
division unit to compute this inverse immediately after fetching a
ray from the staging buffer. The inverse is reused when traversing
an individual scene segment. The ray-triangle intersection pipeline
relies on Plücker coordinates [Shevtsov et al. 2007] to delay the
division until intersection is found. Both architectures include a
single ray-box (1 cycle initiation interval, 8 cycle latency) and two
ray-triangle (18 cycle initiation interval, 31 cycle latency) pipelines
shared by all TPs in each TM.

Our evaluation setup includes a GDDR5 DRAM subsystem with
16 32-bit channels, running at an effective clock rate of 8GHz for
a total of 512 GB/s maximum bandwidth. The DRAM row buffer
is 8KB wide. We rely on a sophisticated memory system simulator,
USIMM [Chatterjee et al. 2012], to accuratelymodel DRAM accesses.
Note that using a full memory system simulator is essential for
producing reliable results, since the ray tracing performance is
tightly coupled with the highly complex behavior of DRAM.

The OptiX (v3.9) results are obtained on an NVIDIA GTX TITAN
GPU with 2688 cores running at 876 MHz and 6144 MB GDDR5
memory with 288.4 GB/s bandwidth. The Embree (v2.10) results
are obtained with its example path tracer (v2.3.2) running on an
Intel Core i7-5960X processor with 20 MB L3 cache and 8 cores (16
threads) over-clocked to 4.6GHz.

5.2 Test Scenes
We used eight test scenes, shown in Figure 3, to represent a range
of complexities and scene sizes. They are rendered using path trac-
ing [Kajiya 1986] with five bounces, producing a highly incoherent

Dual Streaming for Hardware-Accelerated Ray Tracing HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Benchmark Small High Depth Complexity
Dragon

870K triangles
Dragon Box
870K triangles

Dragon Sponza
6.6M triangles

San Miguel
10.5M triangles

Fairy Forest
174K triangles

Crytek Sponza
262K triangles

Vegetation
1.1M triangles

Hairball
2.9M triangles

Figure 3: Scenes used for all performance tests and comparisons.

Table 2: The performance results comparing OptiX, Embree, STRaTA and our dual streaming architecture. Note $ means cache, M means
millions. Values highlighted in red indicate the best performance for that metric.

Benchmark Small High Depth

Dragon Dragon Dragon San Fairy Crytek Vegeta- Hairball
Box Sponza Miguel Forest Sponza tion

OptiX Render Time (ms/frame) 24.50 92.97 151.83 397.47 84.05 140.11 266.92 229.79
Rays Traced per sec (M) 135.02 112.6 65.98 24.42 78.88 72.04 26.1 27.54

Embree Render Time (ms/frame) 38.13 103.81 118.05 143.64 83.6 150.63 178.99 113.32
Rays Traced per sec (M) 99.54 89.08 70.62 50.48 96.08 62.04 41.66 45.28

Render Time (ms/frame) 23.12 91.27 70.98 125.51 16.1 39.0 48.23 36.2
Rays Traced per sec (M) 89.7 128.9 135.4 72.6 365.6 233.3 121.4 111.2
DRAM Energy (J) 2.34 (55%) 10.17 (56%) 5.32 (46%) 15.08 (60%) 0.87 (32%) 2.26 (32%) 5.38 (52%) 4.61 (59%)

On-Chip Memory Energy (J) 1.84 (43%) 7.67 (42%) 6.03 (52%) 9.76 (39%) 1.76 (65%) 4.55 (65%) 4.70 (46%) 3.02 (39%)

Compute Energy (J) 0.08 (2%) 0.29 (2%) 0.21 (2%) 0.33 (1%) 0.09 (3%) 0.24 (3%) 0.23 (2%) 0.14 (2%)

Avg. Bandwidth (GB/s) 219.33 266.65 137.48 219.34 99.01 101.95 229.59 254.53

ST
R
aT

A

$ Lines Transferred (M) 79.2 380.1 152.5 430.1 24.91 62.14 173 144

Render Time (ms/frame) 47.12 154.08 117.97 363.16 21.64 63.56 115.30 247.75
Rays Traced per sec (M) 44.0 76.3 81.5 25.1 272.2 143.3 50.8 16.2
DRAM Energy (J) 5.63 (66%) 21.61 (67%) 11.49 (60%) 48.50 (75%) 1.36 (40%) 4.46 (41%) 14.48 (61%) 35.47 (78%)

On-Chip Memory Energy (J) 2.72 (32%) 9.89 (31%) 7.31 (38%) 15.3 (24%) 1.97 (57%) 6.07 (56%) 8.78 (37%) 9.82 (21%)

Compute Energy (J) 0.15 (2%) 0.53 (2%) 0.38 (2%) 0.76 (1%) 0.12 (3%) 0.35 (3%) 0.46 (2%) 0.49 (1%)

Avg. Bandwidth (GB/s) 251.00 327.41 185.16 221.77 125.52 137.07 280.86 245.41

ST
R
aT

A
no

ea
rl
y

te
rm

in
at
io
n

$ Lines Transferred (M) 184.8 788.2 341.3 1258 42.4 136.1 506.0 950.0

Render Time (ms/frame) 18.08 66.3 40.93 79.61 17.05 44.6 68.56 63.27
Rays Traced per sec (M) 114.8 177.4 234.8 114.6 345.6 204.11 85.4 63.5
DRAM Energy (J) 1.15 (42%) 4.66 (40%) 4.47 (57%) 8.12 (50%) 1.61 (53%) 4.51 (50%) 4.41 (41%) 4.56 (43%)

On-Chip Memory Energy (J) 1.52 (55%) 6.54 (57%) 3.10 (40%) 7.63 (47%) 1.30 (43%) 4.14 (46%) 5.96 (56%) 5.75 (54%)

Compute Energy (J) 0.09 (3%) 0.36 (3%) 0.23 (3%) 0.53 (3%) 0.10 (3%) 0.32 (4%) 0.37 (3%) 0.33 (3%)

Avg. Bandwidth (GB/s) 140.21 114.98 271.30 255.61 230.35 237.40 142.75 142.88
$ Lines Transferred (M) 39.6 119.2 173.5 317.9 58.7 165.4 152.9 141.3

Ray Stream $ Lines (M) 11.92 45.81 43.94 146.34 18.4 80.56 94.03 76.22
Scene Stream $ Lines (M) 7.54 8.0 54.31 72.27 1.50 2.26 8.20 19.18
Shading $ Lines (M) 17.43 42.38 45.00 46.22 30.53 45.42 32.46 26.99
Hit Record $ Lines (M) 2.74 22.97 31.04 53.93 8.33 37.21 18.28 18.89

D
ua

lS
tr
ea
m
in
g

Ray Duplication 4.55 3.14 4.18 15.19 3.00 8.55 15.15 16.02

collection of secondary rays, which is both challenging for high-
performance ray tracing and typical for realistic rendering. Each
image is rendered at 1024 × 1024 resolution, resulting in at most
10.5 million primary and secondary rays. Dual streaming traces at

most two million rays (and their duplicates) per wavefront, while
STRaTA traces 80,000 rays, many potentially at different depths. We
use a simple Lambertian material on all scenes, so that the results
are not skewed by expensive shading operations.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA K. Shkurko et al.

0

Dual Streaming STRaTA OptiX Embree

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

Fr
am

e
 R

en
de

r
Ti

m
e

 (m
s)

50
100
150
200
250

400

300
350

Figure 4: Render time per frame. Lower is better.

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

D
RA

M
 E

ne
rg

y
 (J

)

Dual Streaming STRaTA

0
2
4
6
8

10
12
14
16

Figure 5: DRAM energy per frame. Lower is better.

Some scenes are chosen to present the performance of our dual
streaming hardware in atypical cases that it is not designed to opti-
mize. The first two, Fairy Forest and Crytek Sponza, are small scenes
that can fit in the on-chip memory. Therefore, the improvements
that dual streaming introduces for better DRAM access provide no
benefits. The other two scenes, Vegetation and Hairball, are not as
small, but have extreme depth complexity, where early termina-
tion, which is disabled for dual streaming, can provide tremendous
savings in traversal and ray duplication.

5.3 Performance Comparisons
Table 2 provides detailed test results. The results for our dual stream-
ing hardware and STRaTA are obtained from hardware simulations,
so they include detailed information. For dual streaming, we also
report a breakdown of the memory traffic and average ray dupli-
cation rates, which measure the ratio of the total number of rays
enqueued into any treelet to the number of unique rays generated.
The OptiX and Embree results only include render time and rays
traced per second, measured on actual hardware.

Figure 4 compares the render times per frame between dual
streaming, STRaTA, OptiX and Embree. Figure 5 compares DRAM
energy per frame between dual streaming and STRaTA. Notice that
for all benchmark scenes our dual streaming hardware provides sub-
stantially superior performance as compared to STRaTA, and the
difference is more substantial in larger scenes. It achieves lower ren-
der times (up to almost twice as fast in large scenes) and consumes
less DRAM energy (about half of STRaTA in some scenes).

In our small scenes, Fairy Forest and Crytek Sponza, which
STRaTA can fit in the on-chip memory, our dual streaming imple-

0

1

2

3

4

5

Ray-TriangleRay-Box

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

Ra
tio

 t
o

 S
TR

aT
A

Figure 6: Number of box and triangle tests performed by our dual
streaming hardware per frame. Lower is better.

0
2
4
6
8

10
12
14
16

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

Ra
y

 D
up

lic
at

io
n

Figure 7: Dual streaming ray duplication. Lower is better.

mentation can still achieve a similar render time, but the additional
burden of streaming rays costs extra DRAM energy.

On the other hand, the lack of early termination in our implemen-
tation of dual streaming hurts the render time in scenes with high
depth complexity, Hairball and Vegetation. This is due to the extra
work that our dual streaming implementation endures (for finding
potentially all hits) and STRaTA can avoid via early termination
(to find the first hit). This extra work can be clearly seen in the
elevated ray-triangle intersection counts, shown in Figure 6, and
the rates of ray duplication, shown in Figure 7. However, in the San
Miguel scene, even though it also has substantial depth complexity
causing several times more triangle intersections, the savings of
dual streaming more than make up for the extra computation. This
result confirms that dual streaming has the potential to provide
more savings for larger scenes.

Even though dual streaming requires more intersection tests
than STRaTA, all compute makes up around 3-5% of total energy
spent per frame, as can be seen in Table 2. Thus, a five-fold increase
in the number of intersection tests generates a tiny increase in
compute energy. The remaining 95-97% of frame energy is spent
by on-chip memories and DRAM, which is by far the single largest
consumer.

The breakdown of the memory traffic for dual streaming and
STRaTA are shown in Figure 8. Notice that the scene stream only
takes up a relatively small portion, even in large scenes. Although
the total traffic generated by dual streaming is smaller than that of
STRaTA for all but Dragon Sponza and small scenes, dual streaming
substantially reduces scene traffic for all scenes. Comparing Dragon
Sponza to San Miguel, which is almost twice the size, we can see

Dual Streaming for Hardware-Accelerated Ray Tracing HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

0

100

200

300

Scene Stream Ray Stream Hit Record Shading

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

Ca
ch

e
 L

in
es

 T
ra

ns
fe

rr
ed

 (
M

)

400

STRaTA

Figure 8:Memory traffic generated by dual streaming and STRaTA,
in millions of cache lines (64B each). Lower is better.

0

0.2

0.4

0.6

0.8

1

Dragon
Box

Vegeta-
tion

Dragon Dragon
Sponza

San
Miguel

Fairy
Forest

Crytek
Sponza

Hairball

Ra
tio

 t
o

 n
o

 T
er

m
in

at
io

n

Pre-test Post-test

Figure 9: Effect of early ray termination on render times (ms/frame).
Lower is better.

that they have similar scene stream costs (Figure 8). However, the
ray stream can contribute a substantial portion of the memory
traffic in all scenes. In the case of San Miguel, ray duplications
not only cause extra computation but also a substantial amount
of ray stream traffic and extra hit record updates, though it still
renders almost twice as fast with dual streaming and consumes
almost half the DRAM energy, as compared to STRaTA. Note that
the magnitude of the memory traffic is related to, but does not
directly correlate with the DRAM energy or performance, because
they are also influenced by the order in which the memory requests
are generated.

5.4 Early Termination
Here we provide our test results for evaluating the two early ray
termination approaches discussed in Section 3. Figure 9 compares
the render times with pre-test and post-test early termination ap-
proaches to no early termination. Notice that pre-test can provide
some improvement, especially for scenes with high depth complex-
ity. The post-test, however, is less effective in our test scenes. Our
experiments also revealed that combining tests does not improve on
using pre-test alone. We attribute the slightly better performance
achieved using pre-test (as compared to post-test) to its ability to
skip ray traversal through the current scene segment, while post-
test is only helpful in preventing unnecessary ray duplication when
a closer hit has already been found.

It is also important to note that in some scenes our early termina-
tion strategies can even impact the overall render time and DRAM
energy negatively. This is not surprising, since early termination

Table 3: Main memory utilization measured in bytes per ray for
comparison architectures (lower is better). GB/s is the total main
memory bandwidth and MRPS is millions of rays per second.

Architecture GB/s MRPS Bytes/Ray
[Aila and Karras 2010] 2.0 - 3.8 GB/fr. 3.3 MR/fr. 598 - 1137

[Nah et al. 2014] 0.4 - 0.6 18 - 20 20 - 33
[Liktor and Vaidyanathan 2016] not given 155 - 335 61 - 298

(bench) 138 - 267 73 - 135 1015 - 3021
STRaTA (small) 99 - 192 233 - 366 271 - 437

(depth) 230 - 255 112 - 121 1891 - 2269
(bench) 115 - 271 115 - 235 648 - 2230

Dual Streaming (small) 230 - 237 204 - 346 667 - 1163
(depth) 143 64 - 85 1672 - 2250

requires random memory accesses that can cause TPs to stall. As
such, optimizing early ray termination in dual streaming is left for
future work.

We also compare the effect of early ray termination on STRaTA,
shown in Table 2. Disabling it can incur a significant increase in
frame times of up to 3× for San Miguel and almost 7× for Hairball.
The total number of cache line transfers fromDRAMat least doubles.
These increases are expected because STRaTA reloads scene data
as rays traverse back to parent treelets. Note that compared to
STRaTA without early ray termination, dual streaming has lower
frame render times for all scenes. For all but small scenes, dual
streaming uses less DRAM energy and the number of cache lines
transferred is also significantly smaller. In depth exploration of
early ray termination within dual streaming is left for future work.

6 LIMITATIONS
The main feature of the dual streaming algorithm is to refactor ray
tracing into two predictable data streams where the scene data is
loaded at most once per ray pass. At a very high level this is in some
ways a reversal from traditional algorithms. Instead of tracing a
ray to completion while loading scene data (treelets) on demand, a
portion of the scene is loaded once and all rays that intersect with
it are streamed through. While the memory bandwidth required for
scene data is reduced significantly, dual streaming requires band-
width for ray data (Figure 8). This, in turn, becomes an interesting
challenge for the current version of the proposed hardware - how
to manage the memory bandwidth required for the ray traffic?

One way to compare to other systems is by considering how
much data the system fetches per ray, shown in Table 3. For example,
in terms of Bytes/Ray our dual streaming implementation is within
a factor of two from the seminal treelet architecture [Aila and
Karras 2010]. One reason for this difference is that dual streaming
can not perform early termination. This can generate a lot of extra
ray traffic between treelets. For scenes with high depth complexity
(Vegetation and Hairball), this problem is increased because the
number of treelets a ray intersects is proportional to the number of
spatially-distant leaf nodes it must visit.

We can compare against another architecture targeting mobile
platforms, RayCore [Nah et al. 2014]. It benchmarks using small
scenes that fit nicely into the cache and therefore traditional algo-
rithms that keep rays on chip result in very small traffic to main

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA K. Shkurko et al.

memory. While dual streaming still reduces the scene traffic signif-
icantly, small scenes show the overhead of ray streams.

While dual streaming reduces scene traffic by introducing fixed
traversal order, other researchers have made good progress in com-
pressing the BVH data and thus reducing Bytes/Ray, for exam-
ple [Liktor and Vaidyanathan 2016]. This method compresses BVH
layouts in a manner similar to [Yoon and Manocha 2006], but adds
modifications to compress treelet-interior pointers and optimize
layout for caches. A direct comparison of the Bytes/Ray metric
is complicated by the different memory architecture and heavy
instancing in some of their test scenes. Additionally, they use index
nodes to achieve a 50% reduction in L2 to L1 bandwidth, which
we do not attempt. Dual streaming is largely orthogonal to such
memory optimizations. Applying a similar scene data compression
technique could help reduce scene traffic further, but more impor-
tantly it would reduce the number of scene segments, thus reducing
ray duplication and ray traffic.

These comparisons offer only partial evaluation because raw
memory traffic does not consider DRAM management like row
buffer hit rates (see Section 2.1) which can have a huge impact on
the actual latency and power of the memory system. In fact, it is
possible for memory bandwidth to increase while reducing access
latency [Kopta et al. 2015]. The comparisons also point out the main
challenge in extending dual streaming: managing, minimizing, and
compressing ray traffic (see discussions of future work in Section 7).

Because dual streaming processes wavefronts of rays, renderers
and scenes that generate many ray bounces would require many
passes, which could result in undesired drop in processor utilization
and increase in memory traffic per ray. A limit to the number of
ray bounces would bound this, but also introduce rendering bias,
which, depending on the scene and light transport, may or may not
be negligible.

Dual streaming architecture does not directly address building
the acceleration structure and scene segments on chip. Because
dual streaming is envisioned as a graphics accelerator, an external
process would generate the scene stream and load it into DRAM be-
fore rendering a frame. However, dual streaming could be modified
to rely on its general purpose execution units for this task.

7 FUTUREWORK
Because dual streaming completely re-orders the traversal within
ray tracing to address the fundamental problems of the traditional
traversal order, it also exposes new and interesting challenges. They
represent fertile ground for additional optimizations and future
research. We discuss some of these challenges here.

Treelet Assignment: Optimizing treelet assignment to limit ray
duplication and thus ray bandwidth is likely to yield better per-
formance than optimizing to accelerate the traversal of individual
rays. For example, it is unclear if treelets should prefer a shallow
structure or if they should be constructed in a depth-first fashion
producing deeper treelets. We would expect a combination of the
two approaches to deliver superior performance.

Traversal order: Once a scene segment is processed, any and all
of its child segments can be selected into the working set. Adjusting
the predefined segment traversal order based on the structure of

the BVH or altering the traversal order on-the-fly based on infor-
mation gathered during the traversal of the parent segments can
provide substantial performance benefits. For example, in our cur-
rent implementation it is likely that rays are not traversed through
the closer segment first, reducing the effectiveness of any early
ray termination scheme. Modifying the traversal order to be more
amenable for early ray termination without significant increase in
memory traffic is an important open problem.

Early Termination: Unlike traditional ray tracing, implementing
early ray termination is not trivial with dual streaming. Since ray
stream excludes unique hit information shared by ray duplicates,
the hit information must be gathered from the hit record separately.
There are several alternatives to our current implementation. For
example, if the hit record is not already on chip, it might be more
beneficial for pre-test to traverse the ray anyway, instead of stalling
until the read is serviced. Alternatively, a ray waiting for the hit
record data can be simply skipped until the data arrives. Also, the
hit information can be requested and cached for the entire bucket
of rays before processing or even scheduling it.

Data Compression: The ray stream is the major component of the
memory bandwidth used by dual streaming. Therefore, compressing
the duplicated ray datamight significantly improve the performance
and reduce the energy cost [Keely 2014]. While the scene stream
uses only a fraction of the memory bandwidth, compressing the
scene data can still be helpful in reducing the number of segments
and thereby reducing the number of duplicated rays. This would
reduce the total memory bandwidth further.

Memory Optimizations: It may be possible to partition streams
between on-chip and off-chip DRAM, in order to reduce energy
further. In particular, because the bandwidth requirements for the
scene stream are low and the access latency is hidden by prefetching,
the scene data can reside on a slower off-chip memory. Furthermore,
it may be possible to lower the operating frequency of the off-chip
memory serving the scene stream to significantly reduce the energy
use without impacting performance negatively. Moreover, the dual
streaming architecture has the potential to take full advantage of the
upcoming high bandwidth memory (HBM) systems [JDEC Standard
2015] and hide their additional latency through streaming.

DRAMModifications: Ray streams effectively convert DRAM into
a temporary staging buffer that writes and reads rays only once.
Thus, after ray data is read from DRAM, there is no need to preserve
it, which requires DRAM to write the contents of the row buffer
back thus consuming energy and contributing to memory latency.
A DRAM modified for ray streams could benefit from “destructive
reads” which would avoid these costs.

Additional Streaming Opportunities: Our traversal guarantees
that the scene geometry is accessed at most once per pass. This
structure can be used for rendering extremely large scenes that
cannot fit in memory by streaming them from a disk or other high
latency locations [Eisenacher et al. 2013].

8 CONCLUSION
We introduced the dual streaming approach that restructures ray
traversal into a predictable process that allows both scene data and

Dual Streaming for Hardware-Accelerated Ray Tracing HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

ray data to be streamed from main memory in a highly structured
way. This approach is tailored to the fundamental operation of
DRAMmemory, where data accessed sequentially from an open row
buffer is dramatically more efficient in both energy and latency than
more random accesses. This streaming approach also eliminates
some major bottlenecks inherent in traditional ray tracing order.

We also provided a first hardware implementation of dual stream-
ing and test results using cycle-accurate hardware simulator, show-
ing that our implementation of dual streaming already outperforms
STRaTA, a highly optimized architecture for traditional ray tracing,
in typical large scenes. Finally, we included an extensive discussion
for potential future improvements on dual streaming implemen-
tation, providing a new avenue for further research on hardware
accelerated ray tracing.

ACKNOWLEDGMENTS
This material is supported in part by the National Science Founda-
tion under Grant No. 1409129. Josef Spjut and Elena Vasiou provided
helpful feedback. Fairy Forest is from the University of Utah, Cry-
tek Sponza is from Frank Meinl at Crytek and Marko Dabrovic,
Dragon is from the Stanford Computer Graphics Laboratory, Vege-
tation and Hairball are from Samuli Laine, and San Miguel is from
Guillermo Leal Laguno. Cem Yuksel combined Sponza atrium by
Marko Dabrovic with the Stanford Dragon for Dragon Sponza.

REFERENCES
Timo Aila and Tero Karras. 2010. Architecture Considerations for Tracing Incoherent

Rays. In Proc. High Performance Graphics.
Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray traversal on

GPUs. In Proc. High Performance Graphics. ACM, New York, NY, USA, 145–149.
Timo Aila, Samuli Laine, and Tero Karras. 2012. Understanding the Efficiency of Ray

Traversal on GPUs – Kepler and Fermi Addendum. NVIDIA Technical Report NVR-
2012-02. NVIDIA Corporation.

R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. 2000. Mem-
ory Hierarchy Reconfiguration for Energy and Performance in General-Purpose
Processor Architectures. In Proceedings of MICRO-33. 245–257.

Rasmus Barringer and Tomas Akenine-Möller. 2014. Dynamic ray stream traversal.
ACM Transactions on Graphics (TOG) 33, 4 (2014), 151.

James Bigler, Abe Stephens, and Steven G. Parker. 2006. Design for Parallel Interactive
Ray Tracing Systems. In Symposium on Interactive Ray Tracing (IRT06).

Jacco Bikker. 2012. Improving Data Locality for Efficient In-Core Path Tracing. In
Computer Graphics Forum, Vol. 31. 1936–1947.

Mahdi Nazm Bojnordi and Engin Ipek. 2012. PARDIS: A Programmable Memory
Controller for the DDRx Interfacing Standards. In International Symposium on
Computer Architecture (ISCA ’12).

Solomon Boulos, Dave Edwards, J Dylan Lacewell, Joe Kniss, Jan Kautz, Peter Shirley,
and Ingo Wald. 2007. Packet-based Whitted and Distribution Ray Tracing. In Proc.
Graphics Interface.

Erik Brunvand, Daniel Kopta, and Niladrish Chatterjee. 2014. Why Graphics Program-
mers Need to Know About DRAM. In ACM SIGGRAPH 2014 Courses.

N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee, K.
Sudan, M. Awasthi, and Z. Chishti. 2012. USIMM: the Utah SImulated Memory
Module. Technical Report UUCS-12-02. University of Utah.

C. Eisenacher, G. Nichols, A. Selle, and B. Burley. 2013. Sorted Deferred Shading for
Production Path Tracing. Computer Graphics Forum 32, 4 (2013).

Venkatraman Govindaraju, Peter Djeu, Karthikeyan Sankaralingam, Mary Vernon, and
William R. Mark. 2008. Toward A Multicore Architecture for Real-time Ray-tracing.
In IEEE/ACM International Conference on Microarchitecture.

Christiaan Gribble and Karthik Ramani. 2008. Coherent Ray Tracing via Stream
Filtering. In Symposium on Interactive Ray Tracing (IRT08).

Bruce Jacob, Spencer Ng, and David Wang. 2008. Memory Systems - Cache, DRAM,
Disk. Elsevier.

JDEC Standard. 2015. High Bandwidth Memory (HBM) DRAM. Technical Report
JESD325A. JDEC Solid State Technology Association.

James T. Kajiya. 1986. The Rendering Equation. In Proceedings of SIGGRAPH. 143–150.
Sean Keely. 2014. Reduced Precision for Hardware Ray Tracing in GPUs. In High-

Performance Graphics (HPG 2014).

John Kelm, Daniel Johnson, Matthew Johnson, Neal Crago, William Tuohy, Aqeel Mah-
esri, Steven Lumetta, Matthew Frank, and Sanjay Patel. 2009. Rigel: an architecture
and scalable programming interface for a 1000-core accelerator. In ISCA ’09.

Hong-Yun Kim, Young-Jun Kim, and Lee-Sup Kim. 2010. Reconfigurable mobile stream
processor for ray tracing. In Custom Integrated Circuits Conference (CICC).

Hong-Yun Kim, Young-Jun Kim, and Lee-Sup Kim. 2012. MRTP: Mobile Ray Trac-
ing Processor With Reconfigurable Stream Multi-Processors for High Datapath
Utilization. IEEE Journal of Solid-State Circuits 47, 2 (feb. 2012), 518–535.

Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al Davis. 2013. An
energy and bandwidth efficient ray tracing architecture. In Proc. High-Performance
Graphics. ACM, 121–128.

Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al Davis. 2015.
Memory Considerations for Low Energy Ray Tracing. Computer Graphics Forum
34, 1 (2015), 47–59.

Daniel Kopta, Josef Spjut, Erik Brunvand, and Alan Davis. 2010. Efficient MIMD
architectures for high-performance ray tracing. In IEEE International Conference on
Computer Design (ICCD).

Won-Jong Lee, Shi-Hwa Lee, Jae-Ho Nah, Jin-Woo Kim, Youngsam Shin, Jaedon Lee,
and Seok-Yoon Jung. 2012. SGRT: a scalable mobile GPU architecture based on ray
tracing. In ACM SIGGRAPH 2012 Posters (SIGGRAPH ’12).

Won-Jong Lee, Youngsam Shin, Seok Joong Hwang, Seok Kang, Jeong-Joon Yoo, and
Soojung Ryu. 2015. Reorder buffer: an energy-efficient multithreading architecture
for hardware MIMD ray traversal. In Proc.High-Performance Graphics. ACM, 21–32.

Gábor Liktor and Karthik Vaidyanathan. 2016. Bandwidth-efficient BVH Layout for
Incremental Hardware Traversal. In Proc. High Performance Graphics. ACM.

B. Moon, Y. Byun, T.-J. Kim, P. Claudio, H.-S. Kim, Y.-J. Ban, S. W. Nam, and S.-E. Yoon.
2010. Cache-oblivious ray reordering. ACM Trans. Graph. 29, 3 (2010).

N. Muralimanohar, R. Balasubramonian, and N. Jouppi. 2007. Optimizing NUCA
Organizations andWiring Alternatives for Large Caches with CACTI 6.0. InMICRO.

Jae-Ho Nah, Hyuck-Joo Kwon, Dong-Seok Kim, Cheol-Ho Jeong, Jinhong Park, Tack-
Don Han, Dinesh Manocha, and Woo-Chan Park. 2014. RayCore: A Ray-Tracing
Hardware Architecture for Mobile Devices. ACM Trans. Graph. 33, 5 (Sept. 2014).

Paul Navrátil, Donald Fussell, Calvin Lin, and William Mark. 2007. Dynamic ray
scheduling to improve ray coherence and bandwidth utilization. In Interactive Ray
Tracing, 2007. IEEE Symposium on. 95–104.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: a general purpose ray tracing engine. In ACM
SIGGRAPH 2010 papers (SIGGRAPH ’10).

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering complex
scenes with memory-coherent ray tracing. In SIGGRAPH ’97. 101–108.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. 2002. Ray Tracing
on Programmable Graphics Hardware. ACM Transactions on Graphics 21, 3 (2002).

Karthik Ramani and Christiaan Gribble. 2009. StreamRay: A Stream Filtering Architec-
ture for Coherent Ray Tracing. In ASPLOS ’09.

J. Schmittler, I. Wald, and P. Slusallek. 2002. SaarCOR – A Hardware Architecture for
Realtime Ray-Tracing. In EUROGRAPHICS Workshop on Graphics Hardware.

J. Schmittler, S. Woop, D. Wagner, W. Paul, and P. Slusallek. 2004. Realtime Ray Tracing
of Dynamic Scenes on an FPGA Chip. In Graphics Hardware Conference. 95–106.

Maxim Shevtsov, Alexei Soupikov, Alexander Kapustin, and Nizhniy Novorod. 2007.
Ray-Triangle Intersection Algorithm for Modern CPU Architectures. In Procedings
of GraphiCon’2007. Moscow, Russia.

Josef Spjut, AndrewKensler, Daniel Kopta, and Erik Brunvand. 2009. TRaX: AMulticore
Hardware Architecture for Real-Time Ray Tracing. IEEE Trans. on CAD 28, 12 (2009).

Josef Spjut, Daniel Kopta, Solomon Boulos, Spencer Kellis, and Erik Brunvand. 2008.
TRaX: A Multi-Threaded Architecture for Real-Time Ray Tracing. In IEEE Sympo-
sium on Application Specific Processors (SASP).

Ingo Wald, Christiaan P. Gribble, Solomon Boulos, and Andrew Kensler. 2007. SIMD
Ray Stream Tracing-SIMD Ray Traversal with Generalized Ray Packets and On-the-fly
Re-Ordering. Technical Report UUSCI-2007-012. SCI Institute, University of Utah.

I. Wald, S. Woop, C. Benthin, G. Johnson, and M. Ernst. 2014. Embree - A Kernel
Framework for Efficient CPU Ray Tracing. In ACM SIGGRAPH.

Amy Williams, Steve Barrus, R.K̃eith Morley, and Peter Shirley. 2005. An Efficient and
Robust Ray-Box Intersection Algorithm. Journal of Graphics Tools 10, 1 (2005).

Sven Woop, Erik Brunvand, and Philipp Slusallak. 2006. Estimating Performance of a
Ray Tracing ASIC Design. In IRT06.

Sven Woop, Jörg Schmittler, and Philipp Slusallek. 2005. RPU: A Programmable Ray
Processing Unit for Realtime Ray Tracing. ACM Trans. on Graphics 24, 3 (July 2005).

Wm. A. Wulf and S.A. McKee. 1995. Hitting the Memory Wall: Implications of the
Obvious. Computer Architecture News 23, 1 (March 1995), 20–24.

Sung-Eui Yoon and Dinesh Manocha. 2006. Cache-Efficient Layouts of Bounding
Volume Hierarchies. In Computer Graphics Forum, Vol. 25. 507–516.

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM Main Memory Considerations

	3 Dual Streaming
	4 Hardware Architecture
	4.1 Stream Scheduler
	4.2 Scene Buffer
	4.3 Hit Record Updater
	4.4 Comparison to STRaTA

	5 Results
	5.1 Hardware Specifications
	5.2 Test Scenes
	5.3 Performance Comparisons
	5.4 Early Termination

	6 Limitations
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

