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ABSTRACT

Ray tracing is a technique used for generating highly realistic com-

puter graphics images. In this paper, we explore the design of a

simple but extremely parallel, multi-threaded, multi-core proces-

sor architecture that performs real-time ray tracing. Our architec-

ture, called TRaX for Threaded Ray eXecution, consists of a set of

thread states that include commonly used functional units for each

thread and share large functional units through a programmable in-

terconnect to maximize utilization. The memory system takes ad-

vantage of the application’s read-only access to the scene database

and write-only access to the frame buffer output to provide efficient

data delivery with a relatively simple structure. Preliminary results

indicate that a multi-core version of the architecture running at a

modest speed of 500 MHz already provides real-time ray traced

images for scenes of a complexity found in video games. We also

explore the architectural impact of a ray tracer that uses procedural

(computed) textures rather than image-based (look-up) textures to

trade computation for reduced memory bandwidth.

1. INTRODUCTION
At present almost every personal computer has a dedicated pro-

cessor that enables interactive 3D graphics. These graphics pro-

cessing units (GPUs) implement the z-buffer algorithm introduced

in Catmull’s landmark University of Utah dissertation [6]. In this

algorithm the inner loop iterates over all triangles in the scene.

Each pixel is updated with the distance to the eye (the “z” value)

and the triangle’s color unless a smaller distance is already writ-

ten in the z-buffer (See Figure 1). GPU support for this algorithm

involves deep non-branching pipelines of vector floating point op-

erations as the triangles are streamed through the GPU.

These modern GPUs can interactively display several million tri-

angles with image-based (look-up) texture and lighting. The wide

availability of GPUs has revolutionized how work is done in many

disciplines, and has enabled the hugely successful video game in-

dustry. While the commodity hardware implementation of the z-

buffer algorithm has allowed excellent interactivity at a low cost,

there are (at least) three classes of applications that have not signifi-

cantly benefited from this revolution: those that have datasets much

larger than a few million triangles (Greenberg has argued that typi-

cal model sizes are doubling annually [10]) such as vehicle design,

landscape design, manufacturing and some branches of scientific

visualization, those that have non-polygonal data not easily con-

verted into triangles, and those that demand high quality shadows,

reflection, and refraction effects such as architectural lighting de-

sign, rendering of outdoor scenes, vehicle lighting design, movies,

and perhaps future video games.

These classes of applications typically use Whitted’s ray tracing

Figure 1: Left: the z-buffer algorithm projects a triangle to-

ward the nine pixel screen and writes all pixels with the dis-

tance to the eye (the “z” value) and its color unless a smaller

distance is already written in the z-buffer. Each triangle can

be processed independently. Right: the ray tracing algorithm

sends a 3D half-line (a “ray”) into the set of objects and finds

the closest one. In this case the triangle T2 is returned and the

color at the intersection point is computed. Each pixel can be

processed independently.

algorithm [31, 9, 28]. The ray tracing algorithm is better suited

to huge datasets than the z-buffer algorithm because it more natu-

rally employs hierarchical scene structuring techniques that allow

the creation of an image in time sub-linear in the number of objects.

The z-buffer algorithm is linear in the number of scene objects that

are potentially visible after culling. It is ray tracing’s larger time

constant and lack of a commodity hardware implementation that

makes the z-buffer a faster choice for data sets that are not huge.

Ray tracing allows flexibility in the intersection computation for

the primitive scene objects. This allows non-polygonal primitives

such as splines or curves to be represented directly. Ray tracing is

much better suited for creating visual effects such as shadows, re-

flections, and refractions because it directly simulates the physics

of light based on the light transport equation [16, 17]. By directly

and accurately computing global visual effects using ray optics ray

tracing can create graphics that are problematic (or impossible) for

the pure z-buffer algorithm.

While the ray tracing algorithm is not particularly parallel at

the instruction level, it is extremely (embarrassingly) parallel at

the thread level. The fundamental algorithm for ray tracing is to

loop over all pixels on the screen and determine what can be seen

by finding the nearest object seen through that pixel. This loop

“finds the nearest object” by doing a line query in 3D (Figure 1).

This line query, also known as “ray casting” can be repeated re-

cursively to determine shadows, reflections, refractions, and other

optical effects. In the extreme, every ray cast in the algorithm can

be computed independently. What is required is that every ray have

read-only access to the scene database, and write-only access to a

pixel in the frame buffer. Importantly, the threads never require
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communication with other threads.

We propose a custom processor architecture for ray tracing called

TRaX (Threaded Ray eXecution). The TRaX processor exploits

the thread rich nature of ray tracing by supporting multiple thread

contexts (thread processors) in each core. We use a form of dy-

namic data-flow style instruction issue to discover parallelism be-

tween threads, and share large less frequently used functional units

between thread processors. We explore trade-offs between the num-

ber of thread processors versus the number of functional units per

core. The memory access style in ray tracing means that a rela-

tively simple memory system can keep the multiple threads sup-

plied with data. However, adding detailed image-based (look-up)

textures to a scene can dramatically increase the required mem-

ory bandwidth (as it does in a GPU). We also explore procedural

(computed) textures as an alternative that trades computation for

memory bandwidth. The resulting multiple-thread core can be re-

peated on a multi-core chip because of the independent nature of

the computation threads. Other thread-rich applications that could

take advantage of the TRaX architecture include chess AI, image

and video processing, and cryptography.

2. BACKGROUND AND PREVIOUS WORK
Ray tracing can, of course, be implemented on general purpose

CPUs, and on specially programmed GPUs. Both approaches have

been studied, along with a few previous studies of custom architec-

tures.

2.1 Graphics Processing Units
A carefully crafted computational pipeline for transforming tri-

angles and doing depth checks along with an equally carefully crafted

memory system to feed those pipelines makes our current gener-

ation of z-buffer GPUs possible [1, 19]. Current GPUs have up

to hundreds floating point units on a single GPU and aggregate

memory bandwidth of 20-80 Gbytes per second from their on-chip

memories. That impressive on-chip memory bandwidth is largely

to support image-based (look-up) textures for the primitives. These

combine to achieve graphics performance that is orders of magni-

tude higher than could be achieved by running the same algorithms

on a general purpose processor.

The processing power of a GPU depends, to a large degree, on

the independence of each triangle being processed in the z-buffer

algorithm. This is what makes it possible to stream triangles through

the GPU at rapid rates, and what makes it difficult to map ray trac-

ing to a traditional GPU. There are three fundamental operations

that must be supported for ray tracing: intersecting a ray with the

acceleration structure that encapsulates the scene objects, intersect-

ing the ray with the primitive objects contained in the element of

the bounding structure that is hit, and computing the illumination

and color of the pixel based on the intersection with the primitive

object and the collection of the contributions from the secondary

ray segments. These operations require branching, pointer chasing,

and decision making in each thread, and global access to the scene

database: operations that are relatively inefficient in a z-buffer-

based architecture.

While it is possible to perform ray tracing on GPUs [24, 2, 11],

these implementations have not been faster than the best CPU im-

plementations, and they require the entire model to be in graphics

card memory. While some research continues on improving such

systems, the traditional GPU architecture makes it unlikely that the

approach can be used on large geometric models. In particular the

inefficiency of branching based on computations performed on the

GPU, and the restricted memory model are serious issues for ray

tracing on a traditional GPU. The trend, however, in GPU archi-

tecture is towards more and more programmability of the graphics

pipeline. Current high-end GPUs such as the G80 from nVidia,

for example [21, 20], support both arbitrary memory accesses and

branching in the instruction set, and can thus, in theory, do both

pointer chasing and frequent branching. However, a G80 assumes

that every set of 32 threads (a “warp”) essentially executes the same

instruction, and that they can thus be executed in SIMD manner.

Branching is realized by (transparently) masking out threads. Thus,

if branching often leads to diverging threads very low utilization

and performance will occur (similar arguments apply to pointer

chasing). Results for parts of the ray tracing algorithm on a G80

have been reported [11], but to date no complete ray tracing sys-

tems have been reported on these new platforms.

2.2 General CPU Architectures
General purpose architectures are also evolving to be perhaps

more compatible with ray tracing type applications. Almost all

commodity processors are now multi-core and include SIMD ex-

tensions in the instruction set. By leveraging these extensions and

structuring the ray tracer to trace coherent packets of rays, researchers

have demonstrated good frame rates even on single CPU cores [30,

4]. The biggest difference in our approach is that we don’t depend

on the coherence of the ray packet to extract thread-level paral-

lelism. Thus our hardware should perform well even for secondary

rays used in advanced shading effects for which grouping the indi-

vidual rays into coherent packets may not be easy.

The IBM Cell processor [15, 14] is an example of an architec-

ture that might be quite interesting for ray tracing. With a 64-bit

in-order power processor element (PPE) core (based on the IBM

Power architecture) and eight synergistic processing elements (SPE),

the Cell architecture sits somewhere between a general CPU and a

GPU-style chip. Each SPE contains a 128x128 register file, 256kb

of local memory (not a cache), and four floating point units op-

erating in SIMD. When clocked at 3.2 GHz the Cell has a peak

processing rate of 200GFlops. Researchers have shown that with

careful programming, and with using only shadow rays (no reflec-

tions or refractions) for secondary rays, a ray tracer running on a

Cell can run 4 to 8 times faster than a single-core x86 CPU [3]. In

order to get those speedups the ray tracer required careful mapping

into the scratch memories of the SPEs and managment of the SIMD

branching supported in the SPEs. We believe that our architecture

can improve on those performance numbers while not relying on

coherent packets of rays executing in a SIMD fashion.

2.3 Ray Tracing Hardware
Other researchers have developed special-purpose hardware for

ray tracing [18, 12]. The most complete of these are the Saar-

COR [25, 26] and Ray Processing Unit (RPU) [33, 32] architec-

tures from Saarland University. SaarCOR is a custom hard-coded

ray trace processor, and RPU has a custom K-D tree traversal unit

with a programmable shader. Both are implemented and demon-

strated on an FPGA. With an appropriately described scene (using

K-D trees and triangle data encoded with unit-triangle transforma-

tions) the RPU can achieve very impressive frame rates, especially

when extrapolated to a potential CMOS ASIC implementation [32].

Our design is intended to be more flexible than the RPU by

having all portions of the ray tracing algorithm be programmable,

allowing the programmer to decide the appropriate acceleration

structure and primitive encoding, and by accelerating single ray

performance rather than using four-ray SIMD packets. There is,

of course, a cost in terms of performance for this flexibility, but if

adequate frame rates can be achieved it will allow our architecture

to be used in a wider variety of situations. There are many other
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Figure 2: Test scenes rendered on our TRaX architectural simulator. From left to right: Cornell, Sponza, Sponza with procedural

textures, Conference. These are standard benchmarking scenes for ray tracing.

applications that share the thread-parallel nature of ray tracing.

3. TRAX ARCHITECTURE DESIGN
Our overall chip design (Figure 3) is a die consisting of a L2

cache with an interface to off-chip memory and a number of re-

peated identical cores with multiple threads each. Due to the low

communication requirements of the threads, each core only needs

access to the same read only memory and the ability to write to the

frame buffer. The only common memory is provided by an atomic

increment instruction that provides a different value each time the

instruction is executed

3.1 A Single Thread Processor
Each thread processor (TP) in a TRaX core can execute its own

thread code, where a software thread corresponds to a ray. The

thread has a fixed-size register file as well as local access to a set of

functional units that are contained within the TP. Figure 5 shows

these functional units as well as the register file. The type and

number of these functional units is variable in our simulator. More

complex functional units are shared by the TPs in a core.

Instructions are issued in-order in each Thread Processor to re-

duce the complexity at the thread level. An instruction may stall

waiting for a previous instruction to complete, but correct single

thread execution is guaranteed.

3.2 Design of a Single Core
A core consists of a collection of Thread Processors (TPs), shared

functional units, shared issue and load/store units, and a shared L1

cache. Each thread executes concurrently and keeps independent

program state. Figure 4 shows how the threads and functional units

are arranged within a core. The issue unit keeps the instruction

memory that is the same for all threads since they execute the same

code. It also keeps the program counters for each of the threads in

the core. Each thread has access to its exclusive functional units.

Through a simple interconnect fabric we allow each thread to issue

instructions to the shared functional units as well.

In order to access main memory, each core has a shared L1 cache

of a modest size (see Section 6) to exploit locality and screen co-

herence within the core. All load instructions use the cache to read

from memory. While standard cached writes are supported by the

simulator, the code we execute does not require this feature. To

prevent cache pollution by our frame buffer writes, all of the writes

to the output frame buffer in our code write around the cache to the

screen buffer output.

Each functional unit is independently pipelined to complete ex-

ecution in a given number of cycles, with the ability to issue a new

instruction each cycle. In this way, each thread is potentially able to

issue any instruction on any cycle. With the shared functional units,

memory latencies and possible dependence issues, not all threads

may be able to issue on every cycle. The issue unit gives threads

priority to claim shared functional units in a round robin fashion.

Each thread state controls the execution of one ray-thread. Be-

cause the parallelism we intend to exploit is at the thread level,

and not at the instruction level inside a thread, many features com-

monly found in modern microprocessors, such as out-of-order exe-

cution, complex multi-level branch predictors, and speculation, are

eliminated from our architecture. This allows available transistors,

silicon area, and power to be devoted to parallelism. In general,

complexity is sacrificed for expanded parallel execution. This will

succeed in offering high-performance ray tracing if we can keep a

large number of threads issuing on each cycle (see Section 6.1).

4. SIMULATION METHODOLOGY
We have developed a flexible, detailed simulator to analyze per-

formance across many hardware configurations. Given the unique

nature of our architecture, it was not reasonable to adapt available

simulators to our needs. In the style of Simplescalar [5], our cycle-

accurate simulator allows for very quick prototyping, customiza-

tion and extension. Chip-level results are extrapolated from the

results of these core simulations. Functional units are added to the

simulator in a modular fashion, allowing us to support arbitrary

combinations and types of functional units and instructions. This

allows very general architectural exploration starting from our ba-

sic thread-parallel execution model. Unlike a Verilog or VHDL

description, however, we cannot directly map this description in to

a hardware realization and thus cannot guarantee that our proposed

hardware model will fit in the area we would have available on a

die, or draw reasonable electrical current. We can, however, make

reasonably accurate area estimates of the major components of the

architecture such as register files, caches, and arithmetic units by

synthesizing these units separately. We perform no power simu-

lations as our main concern is to achieve high utilization of our

functional units and expect power to be on par with modern GPUs.

The simulator accepts a configuration file describing a set of

Functional Units including memory units and command-line op-

tions specifying the number of hardware threads desired and an in-

put scene. Statistics provided by the simulator include total cycles

used to generate a scene, functional unit utilization, thread utiliza-

tion, thread stall behavior, memory and cache bandwidth, memory

and cache usage patterns, and total parallel speedup.

Currently, the actual code run is a simple single-ray (i.e., pack-
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etless) ray caster that uses a bounding volume hierarchy (BVH) as

its acceleration structure. We use the surface area heuristic to build

our hierarchy so that our simulated ray casting has memory behav-

ior similar to that experienced by more full featured ray tracers.

More details of this code are found in the next section.

Our ray tracing code is executed on simulated processors having

between 1 and 256 threads, with the number of all function units

varying between 1 and 64. The number of read and write ports to

the L1 cache was also varied. Images may be generated for any

desired screen size (see Figure 2 for examples of test scenes). Our

primary goal for the current design phase is to determine the op-

timal allocation of transistors to thread-level resources, including

functional units and thread state, in a single core to maximize uti-

lization and overall parallel speedup. We are also looking carefully

at memory models and memory and cache usage to feed the parallel

threads (and parallel cores at the chip level).

For each simulation we render one frame in one core from scratch

with cold caches. The instructions are assumed to be already in the

instruction cache since they don’t change from frame to frame. The

results we show are therefore an accurate representation of chang-

ing the scene memory on every frame and requiring invalidating

the caches. The results are conservative because even in a dynamic

scene, much of the scene might stay the same from frame to frame

and thus remain in the cache. We determine the time required to

render a single frame and extrapolate the number of frames per

second from these results.

4.1 Functional Units
For a simple ray casting application, large, complex instruction

sets such as those seen in modern x86 processors are unnecessary.

Our architecture implements a basic set of functional units with a

simple but powerful ISA. We include bitwise instructions, branch-

ing, floating point/integer conversion, memory operations, floating

point and integer add, subtract, multiply, reciprocal, and floating

point compare. We also include reciprocal square root because that

operation occurs with some frequency in graphics code for normal-

izing vectors.

We first chose a set of functional units to include in our machine-

level language, shown in Table 1. This mix was chosen by sepa-

rating different instruction “classes” into separate dedicated func-

tional units. We implemented a ray casting benchmark using these

available resources, then ran numerous simulations varying the num-

ber of threads and the width of each functional unit. All execution

units are assumed to be pipelined including the memory unit.

Each thread receives its own private FP Add/Sub execution unit.

FP multiply is a crucial operation for ray-tracing. Cross and dot

Table 1: Default Functional Unit Mix (500MHz cycles)

Latency

Unit Name Number of units (cycles)

IntAddSub 1 / thread 1

IntMul 1 / 8 threads 2

FPAddSub 1 / thread 2

FPMul 1 / 8 threads 3

FPComp 1 / thread 1

FPInvSqrt 1 / 16 threads 15

Conversion 1 / thread 1

Branch 1 / thread 1

Cache 1 (mult. banks) varies

Table 2: Area Estimates (pre-layout) for functional units

using Artisan CMOS libraries and Synopsys. IBM8RF

is a 130nm high performance cell library. IBM10LP is

a 65nm low power cell library. Speed is similar for each

circuit.
Area (μm2)

Resource Name IBM8RF IBM10LP

2kX16byte SRAM 1,761,578 503,000(est.)

128X32 RF 77,533 22,00(est.)

Integer Add/Sub 1,967 577

Integer Multiply 30,710 12,690

FP Add/Sub 14,385 2,596

FP Multiply 27,194 8,980

FP Compare 1,987 690

FP InvSqrt 135,040 44,465

Int to FP Conv 5,752 1,210

products, both of which require multiple FP multiplies, are com-

mon in ray tracing applications. Other common operations such

as blending also use FP multiplies. The FP multiplier is a shared

unit because of its size, but due to its importance, it is only shared

among a few threads. The FP Inv functional unit handles divides

and reciprocal square roots. The majority of these instructions

come from our box test algorithm, which issues three total FP Inv

instructions. This unit is very large and less frequently used hence,

it is shared among a greater number of threads.

5. RAY TRACING APPLICATION
The ray tracing application used in all of our tests is written by

hand in assembly language to take advantage of the functional units

and memory model supported in our architecture. The application
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Table 3: Scene Data with Results for a single 32-Thread TRaX

Core with Phong Shading estimated at 500MHz

Scene Triangles BVH Nodes FPS

conference 282664 266089 1.4282

sponza 66454 58807 1.1193

cornell 32 33 4.6258

provides various shading methods, shadows from a single point

light source and BVH traversal. We have rendered three scenes

in our simulator, well known in the ray tracing literature as bench-

marks: The Cornell Box, Sponza, and the Conference Room scene

(Figure 2).

The test scenes we are using (Table 3) exhibit some important

properties. The Cornell Box is important because it represents the

simplest type of scene that would be rendered. It gives us an idea

of the maximum performance possible by our hardware. Sponza

on the other hand has over 65000 triangles and uses a BVH with

over 50000 nodes. This is a more realistic example of a scene sim-

ilar in complexity to simple video game scenes. The Conference

Room scene is an example of a very large and complex scene with

around 300k triangles. This is similar to a typical modern video

game scene. Even more complicated scenes including dynamic

components will be included in testing as more progress is made.

5.1 Shading Methods
Our ray tracer implements two of the most commonly used shad-

ing methods in ray tracing: simple diffuse scattering, and Phong

lighting for specular highlights [27, 8]. We also include simple

hard shadows from a single point light source. Shadow rays are

generated and cast from each intersected primitive to determine if

the hit location is in shadow (so that it is illuminated only with an

ambient term) or lit (so that it is shaded with ambient, diffuse and

Phong lighting).

Diffuse shading assumes that light scatters in every direction

equally, and Phong lighting adds specular highlights to simulate

shiny surfaces by increasing the intensity of the light if the view

ray reflects straight into a light source. These two shading methods

increase the complexity of the computation per pixel, increasing

the demand on our FUs. Phong highlights especially increase com-

plexity, as they involve taking an integer power, as can be seen in

the standard lighting model:

Ip = kaia + ∑
lights

(kd(L ·N)id + ks(R ·V )α is

The Ip term is the shade value at each point which uses constant

terms for the ambient ka, diffuse kd , and specular ks components

of the shading. The α term is the Phong exponent that controls the

shininess of the object by adjusting the specular highlights. The i

terms are the intensities of the ambient, diffuse, and specular com-

ponents of the light sources.

5.2 Texturing
We also implement procedural textures, that is, textures which

are computed based on the geometry in the scene, rather than an im-

age texture which is simply loaded from memory. Specifically, we

use Perlin noise with turbulence [22, 13]. These textures are com-

puted using pseudo-random mathematical computations to simu-

late natural materials which adds a great deal of visual realism and

interest to a scene without the need to store and load complex tex-

tures from memory. The process of generating noise is quite com-

putationally complex. First, the texture coordinate on the geometry

where the ray hit is used to determine a unit lattice cube that en-

closes the point. The vertices of the cube are hashed and used to

look up eight pre-computed pseudo-random vectors from a small

table. For each of these vectors, the dot product with the offset

from the texture coordinate to the vector’s corresponding lattice

point is found. Then, the values of the dot products are blended

using either Hermite interpolation (for classic Perlin noise [22]) or

a quintic interpolant (for improved Perlin noise [23]) to produce

the final value. More complex pattern functions such as turbulence

produced through spectral synthesis sum multiple evaluations of

Perlin noise for each point shaded. There are 672 floating point

operations in our code to generate the texture at each pixel. We

ran several simulations comparing the instruction count of an im-

age with and without noise textures. We found that there are on

average 50 percent more instructions required to generate an image

where every surface is given a procedural texture than an image

with no textures.

Perlin noise increases visual richness at the expense of compu-

tational complexity, while not significantly affecting memory traf-

fic. The advantage of this is that we can add more FUs at a much

lower cost than adding a bigger cache or more bandwidth. Con-

ventional GPUs require an extremely fast memory bus and a very

large amount of RAM for storing textures [1, 19]. Some researchers

believe that if noise-based procedural textures were well supported

and efficient, that many applications, specifically video games, would

choose those textures over the memory-intensive image-based tex-

tures that are used today [29]. An example of a view of the Sponza

scene rendered with our Perlin noise-based textures can be seen in

Figure 2.

6. RESULTS
Many millions of cycles of simulation were run to characterize

our proposed architecture for the ray-tracing application. We used

frames per second as our principle metric extrapolated from single-

core results to multi-core estimates. This evaluation is conservative

in many respects since much of the scene data required to render the

scene would likely remain cached between consecutive renderings

in a true 30-fps environment. However, it does not account for re-

positioning of objects, light sources, and viewpoints. The results

shown here describe a preliminary analysis based on simulation.

We target 200mm2 as a reasonable die size for a high-performance

graphics processor. We used a low power 65nm library to conser-

vatively estimate the amount of performance achievable in a high

density, highly utilized graphics architecture. We also gathered data

for high performance 130nm libraries as they provide a good com-

parison to the RPU and achieve roughly the same clock frequency

as the low power 65nm libraries.

Basic functional units, including register files and caches, were

synthesized and placed-and-routed using Synopsys tools to gener-

ate estimated sizes. These estimates are conservative, since hand-

designed execution units will likely be much smaller. We use these

figures with simple extrapolation to estimate the area required for

a certain number of cores per chip given replicated functional units

and necessary memory blocks for thread state. Since our area es-

timates do not include an L2 cache or any off-chip I/O logic, our

estimates in Table 4 and Table 5 are limited to 150mm2 in order to

allow room for the components that are currently unaccounted for.

6.1 Performance
For a ray tracer to be considered to achieve real-time perfor-

mance, it much have a frame rate of about 30 fps. The TRaX ar-
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Table 4: Core Area Estimates to Achieve 30 FPS on Confer-

ence. These estimates include the multiple cores as seen in

Figures 3 and 4, but do not include the chip-wide L2 cache,

memory management, or other chip-wide units.

Thrds CoreArea mm2 Core DieArea mm2

/Core 130 65 FPS Cores 130 65
nm nm nm nm

16 4.73 1.35 0.71 43 203 58
32 6.68 1.90 1.42 22 147 42
64 10.60 2.99 2.46 15 138 39
128 18.42 5.17 3.46 9 166 47

Table 5: Performance comparison for Conference and

Sponza assuming a fixed chip area of 150mm2. This fixed

chip area does not include the L2 cache, memory manage-

ment, and other chip-wide units. It is assumed that those

units would increase the chip area by a fixed amount.

Threads # of Cores Conference Sponza
/Core 130 65 130 65 130 65

nm nm nm nm nm nm

16 32 111 22.7 79.3 17.7 61.7
32 22 79 31.9 112.3 24.1 85.1
64 14 50 34.8 123.6 24.0 85.4
128 8 29 28.2 100.5 17.5 62.4

chitecture is able to render the conference scene at 31.9 fps with 22

cores on a single chip at 130nm. At 65nm with 79 cores on a single

chip performance jumps to 112.3 fps.

The number of threads able to issue in any cycle is a valuable

measure of how well we are able to sustain parallel execution by

feeding threads enough data from the memory hierarchy and offer-

ing ample issue availability for all execution units. Figure 7 shows,

for a variable number of threads in a single core, the average per-

centage of threads issued in each cycle. For 32 threads and below,

we issue nearly 50% of all threads in every cycle on average. For

64 threads and above, we see that the issue rate drops slightly end-

ing up below 40% for the 128 threads rendering the Sponza scene,

and below 30% for the Conference scene.

Considering a 32 thread core with 50% of the threads issuing

each cycle, we have 16 instructions issued per cycle per core. In

the 130nm process, we fit 16 to 22 cores on a chip. Even at the low

end, the number of instructions issued each cycle can reach up to

256. With a die shrink to 65 nm we can fit more than 64 cores on a

chip allowing the number of instructions issued to increase to 1024

or more. Since we never have to flush the pipeline due to incorrect

branch prediction or speculation, we potentially achieve an average

IPC of more than 1024. Even modern GPUs with many concurrent

threads, issue a theoretical maximum of around 256 (128 threads

issuing 2 floating point ops per cycle).

Another indicator of sustained performance is the average uti-

lization of the shared functional units. The FP Inv unit shows uti-

lization at 70% to 75% for the test scenes. The FP Multiply unit

has 50% utilization and Integer Multiply has utilization in the 25%

range. The functional unit configuration is discussed later.

A good cache should exhibit high hit rates to reduce memory la-

tency and external bandwidth requirements. We find that even with

a relatively small 2K x 16-byte L1 data cache, hit rates remain in

the 95% range. We attribute this performance to low cache pollu-

tion because all stores go around the cache.

6.2 Cache Performance
We varied cache size and issue width to determine an appropriate
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configuration offering high performance balanced with reasonable

area and complexity. For scenes with high complexity a cache with

at least 2K lines (16-bytes each) satisfied the data needs of all 32

threads executing in parallel. Although performance continued to

increase slightly with larger cache sizes, the extra area required

to implement the larger cache meant that total silicon needed to

achieve 30fps actually increased beyond a 2K L1 data cache size.

To evaluate the number of read ports needed, we simulated a large

(64K) cache with between 1 and 32 read ports. Three read ports

provided sufficient parallelism for 32 threads.

6.3 Comparison
Comparing against the Saarland RPU [33, 32], our frame rates

are higher in the same technology, and our flexibility is enhanced by

allowing all parts of the ray tracing algorithm to be programmable

instead of just the shading computations. This allows our appli-

cation to use (for example) any acceleration structure and primitive

encoding, and allows the hardware to be used for other applications

that share the thread-rich nature of ray tracing.

A ray tracing application implemented on the cell processor [3]

shows moderate performance as well as the limitations of an ar-

chitecture not specifically designed for ray tracing. In particular

our hardware allows for many more threads executing in parallel

and trades off strict limitations on the memory hierarchy. The ef-

fect can be seen in the TRaX performance at 500MHz compared to

Cell performance at 3.2GHz. Table 6 shows these comparisons.

7. CONCLUSION
We have shown that a simple, yet powerful, multi-threaded archi-

tecture can perform real-time ray tracing running at modest clock

speeds on achievable technology. By exploiting the coherence among
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Table 6: Performance comparison for Conference against Cell

and RPU. Comparison in frames per second and million rays

per second(mrps). All numbers are for shading with shadows.

TRaX and RPU numbers are for 1024x768 images. Cell num-

bers are for 1024x1024 images and so the Cell is best compared

using the mrps metric which factors out image size.

TRaX IBM Cell[3] RPU[32]

130nm 65nm 1 Cell 2 Cells DRPU4 DRPU8

fps 31.9 112.3 20.0 37.7 27.0 81.2

mrps 50.2 177 41.9 79.1 42.4 128

process 130nm 65nm 90nm 90nm 130nm 90nm

area (mm2) ≈ 200 ≈ 200 ≈ 220 ≈ 440 ≈ 200 ≈ 190

Clock 500MHz 500MHz 3.2GHz 3.2GHz 266MHz 400MHz

primary rays with similar direction vectors, the cache hit rate is

very high, even for small caches. There is still potential to gain

even more benefit from primary ray coherence by assigning nearby

threads regions of the screen according to a space filling curve.

With the help of our cycle-accurate simulator we expect to im-

prove the performance of our system along many dimensions. In

particular, there may be potential for greater performance by us-

ing a streaming memory model for an intelligently selected subset

of memory accesses in parallel with the existing cache memory.

Ray/BVH intersection in particular will likely benefit dramatically

from such a memory system. We will also improve the memory

system in the simulator to more accurately simulate L2 cache per-

formance.

We are in the process of improving the ray tracing application

used to drive the architectural exploration to include more features.

The goal is to allow for Cook style ray tracing [7] with support for

multisampling. This will allow for features like soft shadows, mo-

tion blur, fuzzy reflections and depth of field. Additionally, we will

add support for image based textures as a comparison against pro-

cedural textures. Some researchers anticipate that a strong niche

for real time ray tracing will involve shallow ray trees (i.e. few re-

flections), and mostly computed textures [29]. Computed textures

using, for example, Perlin noise techniques [22, 13] increase FP ops

by about 50% in the worst case (all primitives use these procedural

textures), but have a negligible impact on memory bandwidth. This

can reserve the memory bandwidth for the portion of the scene with

mapped textures and have a positive impact on total system perfor-

mance by trading computation for memory bandwidth.

We have described an architecture which achieves physically re-

alistic, real-time ray tracing with realistic size constraints. Our

evaluation has shown that TRaX performs competitively or out-

performs other ray tracing architectures, and does so with greater

flexibility at the programming level.
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