
1

A Mobile Accelerator Architecture for Ray
Tracing

Josef Spjut, Daniel Kopta, Erik Brunvand, and Al Davis

Abstract—Mobile computing in the form of smart phones and tablets is becoming ubiquitous. As these devices are being used for
increasingly sophisticated tasks, the graphics requirements are also increasing. With the growing desire for highly realistic graphics,
the use of ray tracing for rendering will become essential. Ray tracing efficiently models complex illumination effects to improve visual
realism in a very different way than current graphics accelerators, which use rasterization on SIMD hardware. Ray tracing also has
some intriguing advantages in the mobile computing space where screen pixel counts are not likely to grow significantly, but scene size
and complexity will continue to grow. We present a novel multi-core MIMD graphics accelerator architecture that is well suited to ray
tracing on mobile platforms. Our architecture provides a large number of floating point resources and exploits thread-level parallelism to
keep those units active during ray tracing. We show that a small-footprint version of this architecture is suitable for the mobile computing
space, and has performance up to 13 times faster than an existing mobile graphics solution for ray tracing.

Index Terms—Ray Tracing, Graphics Accelerator, Computer Architecture

F

1 INTRODUCTION

R ECENT years have seen a huge increase in the com-
putational power and popularity of mobile devices.

Smart phones are dominating the cell phone market
and low-power tablet computing devices are becoming
increasingly popular. Some of the advantages over more
traditional computing platforms are that these devices
are always available, are usually connected to the net-
work, and have support for advanced graphics. Graphics
support is important not only for graphics-intensive
user interfaces, but increasingly because the applica-
tions themselves require high-quality graphics. Mobile
computing applications are being deployed in situations
ranging from medical, to scientific applications where
visualizing data quickly and accurately is essential.

Interactive computer graphics architectures are cur-
rently dominated by single instruction, multiple data
(SIMD) hardware accelerators executing some variant
of triangle rasterization [1]. Sometimes this execution
model is called SIMT for single instruction, multiple
threads. The terms SIMD and SIMT will be used in-
terchangeably in this paper. These highly specialized
processors stream the image primitives through parallel
SIMD pipelines to increase performance, a process made
possible because the scene primitives can be projected to
the screen’s coordinate space independently. However,
this becomes a bottleneck for highly realistic rendering
because it limits shading to per-primitive computations
and does not allow for efficient computation of global
illumination effects without first repeating the transfor-
mation operations for each possible light direction.

• The authors are with the School of Computing at the University of Utah,
Salt Lake City, UT, 84112.
E-mail: sjosef,dkopta,elb,ald AT cs.utah.edu

Ray tracing is the main alternative rendering algo-
rithm to z-buffer based rasterization [2], [3]. The princi-
ple is simple: at each pixel a ray is cast from the viewer’s
eye through the pixel into the virtual scene. That op-
eration returns information about the closest primitive
seen by that ray. The pixel is then shaded (colored)
based on the material properties of that primitive. All
high-performance ray tracers use a hierarchical scene
partitioning structure, known generically as an accel-
eration structure, to prune the ray intersection test [4].
This results in both divergent program execution due to
branching as the ray descends through the acceleration
structure, and non-coherent memory accesses to the
scene database. Neither of these behaviors are efficiently
supported in a parallel SIMD architecture [5], [6], [7].

From each point where the ray intersects an object in
the scene, an additional “secondary” ray can be recur-
sively cast into the scene to determine optical effects such
as shadows, reflections, refraction, caustics (focused light
from an indirect source), and other global illumination
and optical effects. Ray tracing has distinct advantages
over rasterization in terms of its ability to easily render
these optical effects, making ray tracing the rendering
algorithm of choice for highly realistic images. Ray trac-
ing can also be effectively used for traversing volumetric
data and large data sets such as medical images and
other scientific data.

Another potential advantage of ray tracing for mobile
platforms is that first-order performance scales linearly
with the number of screen pixels. The inner loop of a
ray tracer iterates over the pixels, which can each be
processed independently. The hierarchical acceleration
structure allows the search of the scene data to behave
roughly logarithmically in the number of primitives,
whereas first-order rasterization performance scales lin-
early with the number of scene primitives. Some culling



2

based on scene partitioning is possible, but in general
rasterization time grows with the number of geometric
primitives.

For a mobile device, the number of pixels is not ex-
pected to grow dramatically. An iPhone4 Retina display
(640x960) is reported to be roughly at the resolution of
the human eye already [8]. A tablet such as an iPad
(1024x768) [9] or Samsung Galaxy (1280x800) [10] has
somewhat higher pixel count because of larger screen
size. Scene data can be expected to increase in size and
complexity as new applications are explored [11]. Mobile
ray tracers will be able to handle larger scenes as the
memory capacity of mobile devices increases.

In order for acceleration structures to effectively
cull geometry to prevent unnecessary computation, the
branching pattern for ray tracing is unpredictable. The
majority of existing graphics accelerator architectures
depend on keeping clusters of threads coherent in order
to achieve high utilization of the SIMD functional units.
Since it is hard to predict the branching that will occur
among a group of threads, we have designed our archi-
tecture to permit threads to diverge gracefully. Allowing
threads to execute independently has previously been
shown to be useful for accelerating ray tracing [12], [13].

We start with a number of multiple-instruction
multiple-data (MIMD) thread processors (TPs) which are
very simple in-order integer processors. Each TP has a
small register bank and a local memory which is used
for thread-local stack operations. Clusters of TPs share
multiply and add floating point units (FPUs), which are
more area and energy expensive than integer units. We
adjust the size of the cluster to provide high utilization
of the FPUs. TPs and their shared FPUs are grouped
into what we call a thread mutliprocessor (TM). TPs in
a TM share a floating point divide and inverse square
root unit, which is even more area and energy expensive,
yet rarely utilized. Each TM shares a banked instruction
cache to allow TPs that do not conflict for a particular
bank to proceed in parallel. Initially there is a relatively
high bank conflict rate which causes software threads
on the TPs to experience delays. However, we find that
natural “staggering” of the threads through divergent
execution quickly yields higher levels of parallelism.
Multiple TM tiles share a banked data cache which
contains the global, shared scene data and frame buffer.
An example TM with 32 TPs s can be seen in Figure 1.
We present the experimental group and cluster sizes in
detail in section 3.1.

2 RELATED WORK

While mobile ray tracing is a relatively new concept,
mobile graphics accelerators have been in use for some
time and have been growing in popularity. Additionally,
ray tracing has been implemented on more traditional,
high power GPUs with some success.

Fig. 1: A 32-thread TM with shared caches and FPUs

2.1 Commercial

Tegra [14] is a commercial System on Chip (SoC) design
from NVIDIA targeting mobile computing devices such
as cell phones, media players and tablets. An impor-
tant part of the SoC is the inclusion of a graphics
accelerator intended for rasterization. While rasteriza-
tion and ray tracing share some of the same shading
requirements, ray tracing more naturally handles hidden
surface removal, indirect lighting, and shadow effects.
Ray tracing has been performed on NVIDIA’s discrete
GPU solutions, however current Tegra chips do not have
the same unified compute architecture yet and would
likely perform ray tracing poorly. A highly optimized
ray tracer written for a GTX 280 only achieves between
61% and 86% SIMD efficiency [7]. Note that this SIMD
efficiency does not represent the floating point efficiency
directly as many of the executed instructions are inte-
ger or control instructions. A comparison of accelerator
compute capabilities, including the graphics accelerator
from Tegra 2, can be found in Table 1.

PowerVR [15] is an architecture that does very similar
computations to those done by Tegra chips. The main
distinction of the PowerVR parts is that they separate
the image into a set of screen tiles which can be inde-
pendently processed. Triangles that overlap each screen
tile are placed into corresponding geometry bins prior
to hidden surface removal. Visibility is then determined
by performing a simple ray cast for each pixel and each
primitive in the tile. The professed benefit of the tile-
based approach is that with accurate depth information,
the renderer can avoid processing fragments for many
of the hidden surfaces that would not contribute to the
final display color. Ray tracing similarly removes hidden
surfaces prior to processing fragments, but is capable of
retaining access to global scene data. Similar to the Tegra,
PowerVR chips are designed for rasterization and can
perform ray tracing with some difficulty, despite the use
of ray casting for hidden surface removal, because global
scene data is not retained.



3

Conference
282k triangles

(a)

Crytek Sponza
262k triangles

(b)

Dragon
871k triangles

(c)

Fairy
174k triangles

(d)

Fig. 2: Test scenes used to evaluate performance

2.2 Research

Lohrmann [16] presents a method for performing ray
tracing on more traditional GPU-style architectures. Ray
tracing is expressed as vertex and fragment shader pro-
grams that execute within the traditional rasterization
pipeline and operate on scene data stored within the tex-
ture and buffer memories of the GPU. While Lohrmann’s
approach is a useful way to repurpose existing hardware,
our architecture is designed to have the exact hardware
resources needed for ray tracing. In addition, Chang et.
al. [17] find that bounding volume hierarchies (BVH)s
are the most energy efficient acceleration structure on
both CPUs and GPUs. We similarly use a BVH for our
acceleration structure to reduce power consumption.

Kim et al. [18], [19] demonstrate their Mobile Ray
Tracing Processor (MRTP), which is similar to most
SIMD targeted ray tracers in that they experience the dif-
ficulty of dealing with the SIMT execution model. Their
approach is to allow the architecture to dynamically re-
configure a hybrid vector SIMD configuration with fewer
dependent threads of execution. However, to ensure high
vector utilization, the SIMD threads must be able to find
opportunities to issue 3-wide vector operations. While
this dynamic reconfigurability is interesting, we employ
a MIMD design to allow for more thread flexibility. The
MRTP achieves a peak performance of 673K rays/sec
using 16 mm2 in a 0.13 µm process running at 100
MHz on a small scene. The MRTP only executes 103K
rays/sec for the much larger dragon model, which is
representative of the size of modern scenes. Their work
is the best point of comparison for mobile ray tracing
accelerators, hence Table 2 provides comparison with
their best case performance, naively area and frequency
scaled to 65nm and 500 MHz. Anido et al. [20] also
synthesize an architecture for interactive ray tracing
in a 0.13 µm process that only consumes 0.125 mm2.
However, their work tests only very simple scenes and
does not use an acceleration structure, making it a poor
point for comparison to the work presented here.

While our accelerator architecture targets the mobile
SoC space, it has a lot in common with more general and
higher power architectures. TRaX [12], [13], Rigel [21],

Copernicus [22], etc. all take a basic block of threads,
similar to the one presented here, and tile them on a
chip. The main difference is that these tiled architectures
target a die area of around 200 mm2 and a relatively
high power budget, while this work targets a die area of
about 10 mm2 with much less power consumption.

3 ARCHITECTURE AND METHODOLOGY

Our TP architecture is based on a simple, in-order integer
thread execution model. Several of these thread TPs are
then grouped together in a TM to share a number of
floating point execution units and banked instruction
and data caches. The TM tile can be replicated to increase
the total compute power. Since the floating point units
are shared within the architecture, we strive to find a
design point that is capable of achieving high utilization
of these shared units. To a great extent the floating
point utilization depends on the particular application
executing on the system. In this work, we consider a ray
tracer that traces primary visibility as well as shadow
rays.

To program our accelerator, we write a basic ray tracer
in C/C++ and generate LLVM [23] intermediate code.
We use a customized LLVM back end to emit code
compatible with our simple, RISC-like ISA. In order
to execute architecture specific instructions, we expose
a few simple compiler intrinsics to the programmer.
The single executable is then run on each thread inde-
pendently. The primary form of communication among
threads is a simple atomic increment instruction that
each thread uses to find a unique assignment. Global
memory operations are managed by the programmer
and the acceleration structure is built by the host CPU
and made available in the accelerator’s memory space.

We simulate our architecture using a custom cycle-
accurate system simulator in which we can instantiate
a number of TPs and TMs as well as the associated
functional units, including caches and local memories.
Conflicts for shared functional units are resolved in a
round robin fashion. This prevents starvation of any
individual thread. Via cycle-accurate simulation, we can



4

accurately track functional unit utilization, memory us-
age and other statistics related to the execution of our
accelerator.

3.1 Architectural Details

Each TP consists of a simple, in-order, single-issue in-
teger processor with 32 general purpose registers and
a small 512 byte local memory. The local memory acts
as an extended register file for local stack operations.
We do not employ branch prediction and rely instead
on thread parallelism to achieve higher performance
and to keep the shared floating point units busy. In
every configuration the FPU is shared by 8 TPs. We find
empirically that this is sufficient since each TP spends
execution on pointer chasing and waiting for memory
requests to return which keeps it from issuing FPU
instructions on every cycle.

In addition to the FPUs that are shared by each TP
cluster, we also have one special purpose floating point
divide and inverse square root unit. Since this special
purpose functional unit is rarely used, we use only one
of them per TM and for TMs comprising up to 64 TPs. It
should also be noted that the FPDIV/iSQRT functional
unit has a latency of 8 cycles at 500 MHz. This is higher
than any of the other functional units in the accelerator,
all of which have single cycle execution.

Each TM has a 4 kB, 16-bank instruction cache for
every 16 TPs allowing threads to issue in parallel as
long as they are fetching instructions from independent
banks. In practice our in-order threads have enough
execution divergence that sharing this instruction cache
does not have a large negative impact on performance.
Sharing the cache banks and floating point units largely
mitigates the die area overhead that a MIMD architecture
would normally have over a SIMD approach.

For each TM, we use a 16kB banked data cache that
caches data from the global shared memory. We find
that one bank per 8 TP cluster is the appropriate choice.
The global memory segment includes all of the scene
data, acceleration structure, and frame buffer. Because
the thread assignment gives one pixel at a time to each
thread, we force all frame buffer writes to go around the
data cache thereby preventing pollution of the cache by
lines which are write only.

We limit the off-chip bandwidth to 8 GB/s based
on the fact that upcoming mobile SoCs, such as the
Samsung Exynos 5250 [24], achieve up to 12.8 GB/s of
memory bandwidth with a 64 bit memory bus. We be-
lieve 8 GB/s is a reasonable assumption for a compute-
bound GPU in the near future because SoCs also share
that memory bandwidth with other IP blocks. We note
that if the GPU and host CPU are both in memory bound
computational segments, the shared bandwidth will im-
pose performance restrictions. Section 4.1 considers a
future SoC with more available memory bandwidth.

For area and performance estimates, we use Synopsys
DesignWare/Design Compiler [25] and a commercial

TABLE 1: Comparison of mobile graphics accelerator
architectures. All accelerators are scaled to 65nm and 500
MHz naively for better comparison with our configura-
tions. *Tegra 2 die size is estimated from a die photo.

Architecture Size(mm2) GFLOPS RT GFLOPS
PowerVR SGX543MP1 8.0 18.0
PowerVR SGX543MP2 16.0 36.0
NVIDIA Tegra 2 6* 8.0
MRTP [18] (130nm) 16.0 4.3 ≈1.2
MRTP (naively scaled) 4.0 21.5 ≈6.0
32 (1x32) 1.9 4.0 2.5
48 (1x48) 2.5 6.0 3.7
64 (2x32) 3.8 8.0 4.9
64 (1x64) 3.2 8.0 4.9
96 (2x48) 5.1 12.0 7.2
128 (4x32) 7.6 16.0 9.3
128 (2x64) 6.3 16.0 9.2
192 (6x32) 11.4 24.0 12.6
192 (4x48) 10.1 24.0 12.7
256 (8x32) 15.2 32.0 15.5
256 (4x64) 12.6 32.0 15.7
288 (6x48) 15.2 36.0 17.1
384 (8x48) 20.2 48.0 20.3
384 (6x64) 18.9 48.0 20.3
512 (8x64) 25.3 64.0 23.1

65nm CMOS cell library to synthesize functional units,
and Cacti 6.5 [26] for our cache and memory analysis.

Although we do not have accurate power consump-
tion data for this architecture, we can make a rough
estimate based on estimated energy from Cacti and the
activity factor reported by our simulator. Our 4 TM × 32-
thread chip uses an average of 4 Watts rendering our test
scenes. It should be noted that the caches and memories
generated by Cacti are not optimized for low power,
and it is likely that power consumption can be greatly
reduced for more custom designed devices.

4 RESULTS

We simulated the execution times for a number of con-
figurations of the proposed architecture on a simple ray
tracer application to gather performance and utilization
data. We consider TM configurations with 32, 48 and 64
TPs per TM and for 1, 2, 4, 6 or 8 TM tiles. Results in all
tables are ordered by the number of total threads across
all TMs and are annotated by the number of TMs and the
number of TPs per TM in parentheses. The test scenes
in Figure 2 were run on each configuration and the
results presented are an average across the benchmark
scenes unless indicated otherwise. Note that while some
of the images shown have textures, the ray tracer used
to report results does not perform texturing. Each scene
was rendered at a resolution of 1280x720 with primary
rays and shadow rays for a single light source. For every
eight threads in a TM we provide one floating point
multiplier and one floating point adder while the entire
TM shares one special functional unit regardless of the
number of threads. Thus a 32-thread TM has a maximum
9 FLOP per cycle capability while the 48 and 64 TP TMs
have 13 and 17 FLOPs respectively.



5

TABLE 2: Ray tracing performance, shown in millions of
rays per second.

Threads conference crytek dragon fairy Average
32 (1x32) 2.48 1.41 1.94 1.81 1.91
48 (1x48) 3.74 2.11 2.81 2.72 2.84
64 (2x32) 4.94 2.80 3.62 3.59 3.74
64 (1x64) 4.96 2.78 3.60 3.60 3.74
96 (2x48) 7.43 4.19 5.17 5.37 5.54
128 (4x32) 9.80 5.55 6.18 7.03 7.14
128 (2x64) 9.86 5.52 6.09 7.08 7.14
192 (6x32) 14.5 8.24 5.88 10.2 9.72
192 (4x48) 14.7 8.26 6.07 10.3 9.84
256 (8x32) 19.1 10.8 5.75 12.3 12.0
256 (4x64) 19.3 10.8 5.90 12.6 12.2
288 (6x48) 21.5 12.2 5.91 13.4 13.2
384 (8x48) 27.0 15.5 5.74 14.7 15.7
384 (6x64) 27.2 15.5 5.86 14.9 15.9
512 (8x64) 32.5 18.2 5.68 15.8 18.1

A comparison of floating point capabilities of our
architecture and commercial rasterization architectures
can be found in Table 1. The “RT GFLOPS” column is
the simulated floating point performance when running
our ray tracer and is not reported for the commercial
architectures because ray tracers are not readily avail-
able for comparison on those architectures. The “RT
GFLOPS” entry for MRTP [18], [19] is approximated
based on the thread issue data provided in their papers.
Only multiplies and adds are considered in the floating
point compute capabilities of the various architectures,
and do not include the rarely used FPDIV/iSQRT special
function unit.

Table 2 gives a comparison of the ray processing capa-
bilities of the various configurations that were simulated.
As the number of threads increases, so does the raw
performance of the configuration. In the case of the
dragon scene, the memory access pattern is such that
even with only 128 threads, the computation is memory
bandwidth limited, preventing further increases in ray
tracing performance. Section 4.1 goes into more depth on
the bandwidth concern. In order to provide a reasonable
comparison to the MRTP, we consider the only scene
we share in common with them, viz. the dragon. We
choose a 128-thread configuration because the area is
similar to what the MRTP would use when scaled to a
65nm process. We also scale their performance up to 500
MHz assuming the change to the 65nm process would
allow for a faster clock rate, although a 5x increase is
likely optimistic. Our 128 thread configuration is able to
perform 6.18 million rays per second while the MRTP
achieves only 0.515 million rays per second, giving our
architecture a 13x speedup for the same circuit area.

The million rays per second (MRPS) metric is a stan-
dard measure of performance in ray tracing systems.
It is preferred due to the separation from any details
of the image being rendered, such as resolution and
rays per pixel, which can vary widely depending on
which shading techniques are used. As rays per second
increases, either a higher quality image can be rendered
in the same amount of time, or the same image can be

TABLE 3: Performance in millions of rays per second
with the baseline and increased memory bandwidth for
the dragon scene as well as an average across all scenes
tested.

Architecture 8GB/s 16GB/s 8GB/s 16GB/s
dragon dragon Average Average

256 (8x32) 5.75 10.17 12.0 12.7
384 (8x48) 5.75 10.16 15.8 16.3
512 (8x64) 5.69 10.14 18.1 18.5

rendered faster. For an HD resolution of 1280x720 pixels,
we can ray trace images with full shadows at 3.4 frames
per second. While this is not a real-time frame rate, it
is still interactive enough for most medical imaging and
visualization applications.

4.1 Memory Bandwidth Concerns
Our architecture performs ray tracing well and is capable
of utilizing the available floating point units effectively
until the memory bandwidth limit is reached. In partic-
ular, the performance of the dragon scene stops scaling
because it reaches the bandwidth limit with only 128
total threads for any TM count. However, the bandwidth
available to mobile SoCs is likely to grow in the fu-
ture due to increasing memory clock rates as well as
larger memory buses. Table 3 shows the increases in
performance that can be achieved when bandwidth is
raised to 16GB/s. The dragon scene achieves almost a
2x performance increase since it is primarily memory
bandwidth constrained. It is likely that increasing the
size of the cache would also decrease the pressure on
the memory bus.

5 CONCLUSIONS

Pure SIMD is not the most efficient ray tracing archi-
tecture due to the divergent execution and memory
patterns induced by traversing the acceleration struc-
ture and the intrinsic nature of secondary rays [7].
The MRTP architecture [18] addresses this limitation by
allowing their architecture to dynamically reconfigure to
accommodate smaller SIMT blocks. The MRTP relies on
single-thread vector operations to maintain performance
while avoiding the extra overhead of moving to a full
MIMD architecture. Our alternative approach embraces
this divergent behavior and allows threads to execute in
MIMD fashion and recovers efficiency through resource
sharing. Instead of giving each thread its own floating
point multiplier and adder, we decouple those units,
sharing them among a group of threads. This type of
sharing is not possible in a typical SIMD architecture.
Rarely will all threads need the same unit at the same
time. Furthermore, we share banked instruction and data
caches to enable parallel access when threads are not
strictly synchronized. The normal MIMD overhead is
greatly reduced, and we are able to find a 13x speedup
over the reconfigurable SIMT architecture.



6

While it may seem counter-intuitive that MIMD can
work efficiently, most other MIMD systems do not share
expensive computational units. In addition, the pro-
gramming effort required to exploit parallelism in a
SIMT system is quite high. Parallelism can be further
increased by allowing the threads to occasionally exe-
cute vector instructions, increasing the burden on the
programmer. While automated tools can be developed to
ease the required programming effort, these tools are not
yet widely available. In contrast, the programming effort
required to write a ray tracer for a MIMD architecture,
such as the one proposed in this work, is minimal. The
programmer can depend on the hardware to exploit
parallelism through the proper use of shared resources.

As process scaling continues to provide more compute
capabilities per square millimeter and watt, we expect
designs similar to the one presented in this paper to
become a viable alternative. While we have only shown
an architecture capable of interactive frame rates at HD
resolutions, a few process generations should enable
real-time frame rates while supporting more realistic
lighting effects.

ACKNOWLEDGMENTS
The Crytek Sponza scene is available from Crytek at
http://www.crytek.com/cryengine/cryengine3/downloads
This research was supported in part by NSF grant
CNS10174757.

REFERENCES

[1] E. Catmull, “A subdivision algorithm for computer display of
curved surfaces,” Ph.D. dissertation, University of Utah, Decem-
ber 1974.

[2] T. Whitted, “An improved illumination model for shaded dis-
play,” Communications of the ACM, vol. 23, no. 6, pp. 343–349,
1980.

[3] A. Glassner, Ed., An introduction to ray tracing. London: Academic
Press, 1989.

[4] P. Shirley and R. K. Morley, Realistic Ray Tracing. Natick, MA:
A. K. Peters, 2003.

[5] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray trac-
ing algorithm,” ACM Transactions on Graphics (SIGGRAPH ’05),
vol. 24, no. 3, pp. 1176–1185, July 2005.

[6] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray tracing
animated scenes using coherent grid traversal,” in SIGGRAPH ’06.
New York, NY, USA: ACM, 2006, pp. 485–493.

[7] T. Aila and S. Laine, “Understanding the efficiency of ray traversal
on gpus,” in HPG 2009, 2009, pp. 145–149.

[8] C. Brandrick, “iPhone 4’s retina display explained,” June
2010, PC World, http://www.pcworld.com/article/198201/
iphone 4s retina display explained.html.

[9] Apple Computer, “iPad technical specifications,”
http://www.apple.com/ipad/specs/.

[10] Samsung, “Galaxy tablet technical specifications,”
http://www.samsung.com/global/microsite/galaxytab/
10.1/spec.html.

[11] D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, E. Lafortune,
J. A. Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-C.
Foo, “A framework for realistic image synthesis,” in Proceedings
of SIGGRAPH, 1997, pp. 477–494.

[12] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: A
multicore hardware architecture for real-time ray tracing,” IEEE
Transactions on Computer-Aided Design, 2009.

[13] D. Kopta, J. Spjut, E. Brunvand, and A. Davis, “Efficient mimd ar-
chitectures for high-performance ray tracing,” in Computer Design
(ICCD), 2010 IEEE International Conference on, Oct. 2010.

[14] NVIDIA, “Bringing High-End Graphics to Handheld Devices,”
NVIDIA Corporation, Tech. Rep., 2011.

[15] POWERVR, “POWERVR MBX Technology Overview,” Imagina-
tion Technologies Ltd., Tech. Rep., May 2009.

[16] P. J. Lohrmann, “Energy-Efficient Interactive Ray Tracing of
Static Scenes on Programmable Mobile GPUs,” Ph.D. dissertation,
WORCESTER POLYTECHNIC INSTITUTE, February 2007.

[17] C.-H. Chang, P. J. Lohrmann, E. O. Agu, and R. W. Lindeman,
“ENCORE: Energy-Conscious Rendering for Mobile Device,” in
GPGPU, October 2007.

[18] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “MRTP: Mobile ray tracing
processor with reconfigurable stream multi-processors for high
datapath utilization,” IEEE Journal of Solid-State Circuits, vol. 47,
no. 2, 2012.

[19] ——, “Reconfigurable mobile stream processor for ray tracing,” in
Custom Integrated Circuits Conference (CICC), 2010 IEEE, September
2010.

[20] M. Anido, N. Tabrizi, H. Du, M. Sanchez-Elez M, and
N. Bagherzadeh, “Interactive ray tracing using a simd reconfig-
urable architecture,” in Computer Architecture and High Performance
Computing, 2002. Proceedings. 14th Symposium on, 2002, pp. 20 – 28.

[21] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy,
A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel:
an architecture and scalable programming interface for a 1000-
core accelerator,” in Proceedings of the 36th annual international
symposium on Computer architecture, ser. ISCA ’09, 2009.

[22] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R.
Mark, “Toward a multicore architecture for real-time ray-tracing,”
in IEEE/ACM International Conference on Microarchitecture, October
2008.

[23] Chris Lattner and Vikram Adve, “The LLVM Instruction Set and
Compilation Strategy,” CS Dept., Univ. of Illinois at Urbana-
Champaign, Tech. Report UIUCDCS-R-2002-2292, Aug 2002.

[24] S. Bhagwat, “Samsung exynos 5250 begins
sampling - mass production in q2 2012,”
http://www.anandtech.com/show/5467/samsun-exynos-5250-
begins-sampling-mass-production-in-q2-2012.

[25] “Synopsys inc.” http://www.synopsys.com.
[26] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Op-

timizing nuca organizations and wiring alternatives for large
caches with CACTI 6.0,” in MICRO ’07, 2007, pp. 3–14.


