
Estimating Performance of a Ray-Tracing ASIC Design

Sven Woop∗

Saarland University

Erik Brunvand†

University of Utah

Philipp Slusallek‡

Saarland University

Figure 1: Test scenes used to evaluate the DRPU ASIC: Conference (282k triangles) , Mafia (15k triangles), Skeleton (16k triangles),
Helix (78k triangles), and DynGael (85k triangles). For more test scenes see Figure 6.

ABSTRACT

Recursive ray tracing is a powerful rendering technique used to
compute realistic images by simulating the global light transport
in a scene. Algorithmic improvements and FPGA-based hardware
implementations of ray tracing have demonstrated realtime perfor-
mance but hardware that achieves performance levels comparable
to commodity rasterization graphics chips is still not available.

This paper describes the architecture and ASIC implementations
of the DRPU design (Dynamic Ray Processing Unit) that closes this
performance gap. The DRPU supports fully programmable shading
and most kinds of dynamic scenes and thus provides similar capa-
bilities as current GPUs. It achieves high efficiency due to SIMD
processing of floating point vectors, massive multithreading, syn-
chronous execution of packets of threads, and careful management
of caches for scene data. To support dynamic scenes B-KD trees
are used as spatial index structures that are processed by a custom
traversal and intersection unit and modified by an Update Processor
on scene changes.

The DRPU architecture is specified as a high-level structural de-
scription in a functional language and mapped to both FPGA and
ASIC implementations. Our FPGA prototype clocked at 66 MHz
achieves higher ray tracing performance than CPU-based ray trac-
ers even on a modern multi-GHz CPU. We provide performance re-
sults for two 130nm ASIC versions and estimate what performance
would be using a 90nm CMOS process. For a 90nm version with a
196mm2 die we conservatively estimate clock rates of 400 MHz and
ray tracing performance of 80 to 290 fps at 1024x768 resolution in
our test scenes. This estimated performance is 70 times faster than
what is achievable with standard multi-GHz desktop CPUs.

CR Categories: I.3.1 [Hardware Architecture]: Graphics proces-
sors; I.3.7 [3D Graphics and Realism]: Ray-Tracing

Keywords: Ray-Tracing, Hardware Architecture, ASIC Imple-
mentation, Performance Estimation

∗woop@cs.uni-sb.de
†elb@cs.utah.edu
‡slusallek@cs.uni-sb.de

1 INTRODUCTION

The current state-of-the-art in realtime computer graphics is the
rasterization algorithm, mainly because low cost and highly effi-
cient hardware implementations are available that achieve remark-
able levels of performance. The basic principle of this algorithm,
used in all current commodity graphics chips, is toindependently
rasterize one triangle at a time onto the screen. This local triangle
operation can be computed quickly using deep pipelines of custom
floating point hardware. However, the incorrect assumption that tri-
angles are independent is the great weakness of rasterization as it
limits the possible shading operations to local per-triangle compu-
tations. This does not allow for directly computing any global light
effects such as shadows, reflections, transparency, or indirect illu-
mination as this would require direct access to potentially the entire
scene database during rendering. Multi-pass techniques that are of-
ten used to approximate these effects are inaccurate and inefficient,
especially with respect to the required external memory bandwidth.

The trend in realtime computer graphics is towards high realism,
which becomes more and more difficult to achieve with rasteriza-
tion. Conceptually simple simulation-based rendering techniques
like the ray tracing algorithm [2] can compute highly realistic im-
ages bysimulatingthe physics of light based on the rendering equa-
tion. Recursive ray tracing [32] can easily compute shadows, reflec-
tions, refractions, and even combinations of them by recursively
spawning secondary rays at the object intersection point. Ray trac-
ing even allows global illumination to be computed by stochasti-
cally gathering incoming light at a point of interest [27]. The results
of this computation are high quality, photo-realistic images that are
often hard to distinguish from photographs.

Despite all these algorithmic advantages, ray tracing suffers from
its high computational cost, causing renderings to take many sec-
onds to hours to finish. Much research has been performed over
the last two decades to speed up this computation, using different
platforms and algorithms.

1.1 Previous Work

On the software side significant research has been performed on
mapping ray tracing efficiently to parallel machines, including
MIMD and SIMD architectures [7, 12]. The key goal has been
to exploit the parallelism of the hardware architecture in order
to achieve high floating point and thus high ray tracing perfor-
mance [16, 15]. The OpenRT project implemented a high perfor-
mance ray tracer for commodity PCs that are connected via a stan-



Figure 2: DRPU Architecture: Several Rendering Units per chip are supported by the DRPU architecture. These units consist of an application
programmable Shader Processor (SP) to generate and shade rays and a fixed-function part that contains a high performance Traversal Processor
(TP) to traverse the B-KD tree (when requested to by the SP) and a Geometry Unit (GU) to intersect rays with triangles or to transform them
to the local coordinate space defined by a B-KD transformation node. These units are all connected to the Memory Interface via small first
level caches and a Thread Generator schedules new pixels for computation. On dynamic scene changes the B-KD trees are efficiently updated
by the Update Processor.

dard Ethernet network [30, 25]. We use this system for performance
comparison.

Existingprogrammable GPUsavailable in the graphics cards of
today’s PCs can be used for many computationally intensive algo-
rithms as they offer excellent raw floating point performance by
implementing up to 48 SIMD processors. However, the program-
ming model of these GPUs is very limited and does not efficiently
support ray tracing [19, 5]. In particular, it does not provide flexible
control flow and supports only very restricted memory access.

With realtime ray tracing it becomes also necessary to handle
interactive changes in dynamic scenes. This is possible by using
grids as spatial index structure as they allow for fast insertion of
objects and even fast coherent rendering [29]. Separation of the
scene into objects with piece-wise rigid motion and separate static
spatial indices has been suggested [11] and has been implemented
for realtime use on a cluster of PCs [26]. Bounding Volume Hier-
archies [23, 28] have also successfully been used for rendering of
dynamic scenes.

In recent years multiplecustom hardwarearchitectures for ray
tracing have been proposed, both for volume [17, 8] and surface
models. Partial hardware acceleration has been proposed [6] and
a different implementation is commercially available [9]. In addi-
tion a complete ray tracing hardware architecture has been simu-
lated [10]. The first complete, fully functionalrealtime ray tracing
chip was presented in [20, 21]. With the RPU hardware architec-
ture [35] a fully programmable design was implemented with lim-
ited support for dynamic scenes. A fixed function architecture us-
ing B-KD trees to render highly dynamic scenes was published in
[34]. Although the results of these hardware implementations are
promising, none of them achieves performance levels and function-
ality comparable with current rasterization hardware.

2 DRPU HARDWARE ARCHITECTURE

The DRPU approach of this paper is the first one that supports
programmable material and lighting shaders on the one hand and
highly dynamic scenes on the other hand. The architecture mainly
consists of two parts:

1. Ray Casting Units for managing spatial index structures dur-
ing rendering and for manipulating them on scene changes

2. a Shader Processor which consists of four highly multi-
threaded 4-way vector units (SPUs) for SIMD synchronous
execution of bundles of threads to perform shading and ray
generation tasks.

The Ray Casting Units are identical to the architecture as de-
scribed in [34] while the Shader Processor (SP) is very similar to the
SPUs described in [35]. A contribution of this paper is the combi-
nation of both designs, which makes it comparable to rasterization
hardware in terms of support for programmable shading and han-
dling of many kinds of dynamic scenes. This paper describes the
basic details of B-KD trees and the SPU, while more details can be
found in the related papers. The DRPU architecture also contains
the Skinning Processor as described in [34] which is not explained
further here.

The main contribution of this paper is that we implemented and
tested the DRPU on an FPGA and especially recast that same ar-
chitecture to an ASIC using a 130nm CMOS standard cell library
from UMC [24]. We use the FPGA version to help calibrate the
performance estimations of our ASIC implementation. We then ex-
trapolate performance to a 90nm version, which shows that with a
comparable amount of hardware resources as current GPUs one can
achieve a comparable level of rendering performance, while gain-
ing all the advantages of the ray tracing algorithm.

The DRPU hardware architecture is designed for ray tracing of
dynamic scenes with programmable material and lighting shaders.
It is highly scalable by supporting several Rendering Units on a
single chip (see Figure 2). Each such Rendering Unit consists of



a Shader Processor (SP) to shade packets of four rays, a Traversal
Processor (TP) to traverse packets of four rays through B-KD trees,
and a Geometry Unit (GU) to intersect packets of rays with trian-
gles. To hide computation and memory latencies several of these
packets of rays are processed in parallel in the highly multithreaded
hardware. The threads are scheduled by a Thread Scheduler that
performs load balancing and thread generation. Each time a packet
of threads has finished its execution in one of the Rendering Units,
the Thread Scheduler sends four new adjacent pixels to the Render-
ing Unit for processing. There, the packet of four threads is initial-
ized and executed synchronously. The threads stay together in the
packet, but may be masked out on diverging control flow. The SP,
TP, and GU, each support the same number of thread-packets such
that a packet can always continue its compuation in a different unit.

On dynamic scene changes theUpdate Processoron the chip is
used prior to rendering to update bounds of the B-KD trees to adapt
to the scene changes. The spatial index structure and the hardware
units that handle it are explained in detail in the following section.

3 RAY CASTING UNITS FOR DYNAMIC SCENES

For efficiently tracing rays through a scene, ray tracing requires
spatial index structures that subdivide space into cells that can ef-
ficiently be enumerated along a ray. However, recomputing these
spatial index structures is very expensive, which can limit ray trac-
ing to static scenes. To cope with this problem we chose B-KD trees
as index structure, which is a kind of Bounding Volume Hierar-
chy with one dimensional bounds. The structure of the B-KD tree
is computed initially and maintained during rendering where only
some node bounds need to be recomputed.

Such a B-KD tree is a binary tree, where each node recursively
subdivides the geometry of the scene into two disjoint subsets rep-
resented by its two children. Each node stores the index of a coor-
dinate axis and bounds on the geometric extent of its two children
along this axis in the form of two bounding intervals often also re-
ferred to as slabs (see Figure 3). Each leaf node stores a reference
to a single primitive of the scene. For instantiations of objects we
supporttransformation nodes, that store a pointer to the objects root
node, and a transformation matrix to specify its position.

Figure 3: B-KD tree: A B-KD tree node divides a set of primitives
into two disjoint subsets, represented by the two children. The node
stores the extent of the geometry for each child as two bounding
intervals along one splitting axis. The geometry is recursively subdi-
vided until there is only a single primitive per node.

A main advantage of the B-KD trees is low memory consump-
tion as they store the bounds of the children in only a single dimen-
sion. The implicit full bound per node can be obtained, similar to
KD trees, by clipping against the bounding intervals from the top
down. We build our B-KD trees using a Surface Area Heuristic
(SAH) similar to the approach in [28]. The concept of B-KD trees
is described in more detail in [34].

3.1 Update Processor for B-KD Trees

For changed geometry the B-KD tree bounds can be updated by
a simple bottom-up algorithm that merges the full axis aligned
bounds of the nodes from bottom-up through the tree and updates
for each B-KD tree node the extent of the two children along the
node axis. This algorithm can be implemented by only perform-
ing trivial min/max operations that do not touch the structure of the
tree.

This update procedure is performed by a dedicatedUpdate Pro-
cessorthat is fed by an instruction stream which is precomputed
by the driver application for each dynamic object. This instruction
stream includes instructions for loading vertices into one of the 64
vertex registers, computing a triangle bound from 3 vertices, and
merging two bounds together. By operating on vertices the pro-
cessor is optimized for triangle meshes with shared vertices. By
keeping these shared vertices in the vertex registers they can opti-
mally be reused for computing the bound of several triangles, thus
no caches are required. All partial results, such as computed node
bounds are stored to one of 64 specialbound registersto mini-
mize the external memory traffic to only the required updates of
the nodes, vertex fetches, and additional instruction fetches.

For best results the structure of the B-KD tree should “match”
the geometry and its dynamics. This means that geometry in a sub-
tree should stay as close together as possible during the course of
changes. A mismatch can result in significant overlap of the bounds
of child nodes. This leads to redundant traversal and missed op-
portunities for early ray termination, as both child nodesmustbe
traversed if a ray enters an overlap region. As a consequence only
dynamic scenes that show some coherent motion can be handled
efficiently with B-KD trees. Many typical motions, like skinned
meshes, obey this restriction as will be shown in the result sec-
tion by some animated characters. Random movement of triangles,
however, is handled less efficiently because the significant overlaps
would require the traversal of many B-KD tree nodes.

3.2 Traversal Processor (TP)

Traversing B-KD trees typically requires between 50 to 100 traver-
sal steps. Using a fully programmable unit for these operations
wastes precious cycles, since every step would correspond to sev-
eral instructions. Instead a Traversal Processor (TP) is used that
consists of four custom fixed function Traversal Processing Units
(TPU) that are used in SIMD mode which greatly improves traver-
sal performance as it can perform one packet traversal operation
each clock cycle.

The Traversal Processor traverses several packets of four rays
in parallel through the B-KD tree. In order to hide memory and
computation latencies multiple packets of rays are processed simul-
taneously using a wide multi-threading approach [20]. The rays
in the packet are synchronized to operate on the same B-KD tree
node, which reduces the memory bandwidth. This multi-threading
and packet-based approach performs very well because of the high
coherence between adjacent rays. The memory bandwidth is re-
duced further by using dedicated first level caches to store B-KD
tree nodes.

The implemented traversal algorithm for the B-KD tree is similar
to that of standard KD trees [22]. The recursive traversal function
traverses the scene in a traversal intervalI = [near, f ar] along the
ray. We first test for early ray termination by determining if the
current hit is before thenear distance. We then intersect the ray
with the four bounding planes defined by the node giving the two
intersection intervalsI{0,1} for the two leaf nodes (see Figure 4). A
child that lies partially in front of the second one is traversed first,
as it is more likely that the closest hitpoint is located there. Before
this closer child (for instance child 1) is traversed two comparisons
determine if its intersection intervalI1 overlaps the current traver-



sal intervalI . We recursively traverse the child if this is the case.
The traversal interval is then updated to the intersection ofI and
I1, which requires two min/max operations. If the other child over-
laps the traversal interval it is stored onto a stack together with the
intersection ofI andI0 as its traversal interval.

Figure 4: Ray Traversal: The ray is intersected with the four planes
defined by the bounds of each child giving two intersection intervals
I{0,1} along the ray. A child is traversed iff its intersection interval
overlaps the traversal interval I = [near, f ar] of the ray. The closer
child is always traversed first to improve performance through early
ray termination.

3.3 Geometry Unit (GU)

If the Traversal Processor reaches a leaf node, the Geometry Unit
(GU) is responsible for sequentially intersecting the rays of a packet
with the contained triangle geometry using the Möller-Trumbore
algorithm [14], or to sequentially transform rays to the local coor-
dinate space defined by a transformation node of the B-KD tree.
This transformation requires no additional arithmetic units as they
can be shared with the ones used for ray/triangle intersection. The
Geometry Unit is pipelined and can perform one ray triangle in-
tersection or one ray transformation every two clock cycles. Thus
eight cycles are required to transform or intersect the four rays of a
packet.

4 SHADER PROCESSOR (SP)

At its core the DRPU architecture contains a general purpose
Shader Processor (SP) similar to the SPUs used in the RPU archi-
tecture [35]. It supports random memory read and write operations
as well as arbitrary address computations using integer arithmetic.
However, the design has been optimized for algorithms with prop-
erties similar to those of ray tracing: generous thread-level paral-
lelism, high data coherence between threads of nearby pixels, and
a large number of short vector floating point operations. Via a spe-
cial “trace” instruction it can recursively call the Ray Casting Units
described in the previous section for efficient traversal of additional
rays through the index structure. On a “trace” instruction the ray
and a pointer to the spatial index structure are sent to the Traversal
Processor (TP). The TP performs the traversal of the ray with that
structure and writes results to special return registers. The SP may
now continue operating on the thread-packet using the information
provided by the TP.

Similar to current GPUs we use four component, single precision
floating point or integer vectors as the basic data type in the core

Figure 5: An abstract view of the implemented DRPU. Each of the
four Shader Processing Units (SPUs) operates on four-component
vectors as its basic data type, and all four SPUs operate syn-
chronously in SIMD mode making up a 4-thread packet. A total of
32 packets are supported and executed asynchronously in the multi-
threading hardware for a total of 128 supported hardware threads.
Four Traversal Processing Units (TPUs) synchronously traverse pack-
ets of four rays through a B-KD tree using the Geometry Unit (GU)
for ray/triangle intersection.

Shader Processing Unit (SPU)to exploit the available instruction
level parallelism. This results in fewer memory requests of larger
size, and significantly reduces the size of the shader programs com-
pared to a scalar code. Again similar to GPUs, dual-issue instruc-
tions are supported to split the vector into two parts and perform
different computations on them, or to pair an arithmetic instruction
with a load or branch instruction.

We take advantage of thethread parallelism in ray tracing
through a massively multi-threaded hardware design with 128 hard-
ware threads supported in the implemented version of the DRPU.

5between threads as required. Multi-threading allows an in-
crease in

The raw bandwidth requirement of the unmodified ray tracing al-
gorithm is huge [20]. It can be reduced considerably by exploiting
the high coherence between adjacent rays. To this end, four threads
are packed into a packet and executedsynchronously in SIMD mode
in parallel by four SPUs in the hardware (see Figure 5). There are
32 of these four-thread packets supported. Because all threads in
a packet execute the same instruction, identical memory requests
are highly likely for coherent rays in the packet and can be com-
bined. Using SIMD mode, these SPUs can share much of their in-
frastructure (e.g. instruction scheduling and caches), which reduces
the hardware complexity. The current numbers of four threads per
packet and 32 packets were chosen after detailed simulation as a
good balance between hardware complexity and available mem-
ory bandwidth in the current hardware. An increase of the number
of threads would yield higher performance, but a slightly sublin-
ear relation to the required additional space makes 32 packets a
good compromise. On the other hand, increasing the number of
synchronous rays per packet to more than four could cause prob-
lems during Place and Route of the ASIC design. A synchroniza-
tion circuit is required to synchronize between the single units and
larger packets could cause this circuit to be far away from some of
the units. Furthermore, very large packets would reduce the per-
formance for incoherent computations such as highly triangulated
scenes, because few rays would active during the computation.

In order to allow for complex control flow even in a SIMD envi-
ronment the architecture supports conditional branching and full re-



cursion using masked execution and a hardware-maintained register
stack accessible through the register file. Unused parts of this stack
can transparently be spilled out to main memory by the hardware
to allow for deep recursions. Diverging branches of the threads in
the packet are automatically handled sequentially by processing one
control path and putting instruction pointer and activity mask of the
second one onto a control stack. In the executed control path, an ac-
tivity mask determines which threads take part at the computations.
If the current control path reaches a return statement the next item
of the control stack is executed.

Memory requests are a key issue with multi-core designs. It turns
out that the synchronous execution of rays leads to many identical
memory requests that can be packed and thus reduce bandwidth.
This memory packing mechanism only performs the required num-
ber of memory requests for the packet of rays, e.g. if each ray of the
packet wants to read data from the same address only one packed
memory request is performed. Nevertheless incoherent packets are
allowed and cause no additional overhead but do not see improve-
ments either as four single requests are performed. All memory
accesses go through small dedicated caches (see Figure 2) in order
to further reduce external bandwidth and re-use data between dif-
ferent packets of threads. Cache hit rates are generally much higher
than 90% in our test scenes which results on low external bandwidth
requirements (see Table 2).

The main difference of the DRPU to the RPU design as de-
scribed in [35], is the special Geometry Unit, that the DRPU uses
for ray/triangle intersection based on shared triangle vertices. This
unit is required to handle dynamic scenes as precomputing accel-
eration data to speed up a ray/triangle intersection in software on
the SP is difficult as this computation requires matrix inversions
and a second iteration over the dynamic geometry. Also this would
greatly increase the size of the scene database, as no vertices could
be shared, resulting in more memory traffic. The RPU design had
only limited support for rigid-body motion, not for highly dynamic
scenes as supported by the DRPU by using B-KD trees.

5 DRPU IMPLEMENTATION

5.1 FPGA Prototype

To accurately estimate the performance of our ASIC design, we im-
plemented an FPGA version of the DRPU on a Xilinx Virtex-4 LX
160 FPGA [36] that is hosted on the Alpha Data ADM-XRC-4 PCI-
board [1]. The FPGA has access to four 16-bit wide DDR memory
chips used in parallel to make a 64-bit wide memory interface that
can deliver a peak bandwidth of 1.0 GB/s at 66 MHz. The FPGA
is connected via a 64 bit wide PCI bus to the host PC. The DMA
capabilities of the PCI bridge are used to upload scene data (B-KD
tree nodes, shader code, and all shader parameters) to DRAM and
to download frame buffer contents to the application for storage or
display via standard graphics APIs.

The hardware description of the entire DRPU prototype is about
8000 lines of ML [13] code using the HWML library for hardware
description [33]. The specification is fully parameterizable, thus
each of the design parameters, like packet size, number of threads,
latencies, floating point accuracy, and caches, can be changed by
adjusting a single configuration file. We adjusted the configuration
to achieve the best possible performance with our FPGA by com-
pletely using the available logic resources.

Due to the limited size of the FPGA not all features of the DRPU
architecture could be enabled for the prototype: integer operations
are not included, which limits memory reads to offsets of precom-
puted addresses. Write support is limited to a single vector per
shader (similar to GPUs). A fixed register stack of 16 entries is
provided without automatic spilling of unused parts to memory. In
order to take advantage of the available 18 bit multipliers on the Xil-
inx FPGA, a 24-bit floating point format was used. With a packet

Figure 7: Plot of the DRPU ASIC shown with only four of the six
levels of metal wiring so that the memories are visible. The Shader
Processor (SP), Traversal Processor (TP), Geometry Unit (GU), and
Update Processor are shaded, to show their die area and complexity.
As we did not designed the external connection of the chip (PCI plus
DRAM interfaces) pads are not included in the Figure.

size of 4 and 32 packets (128 hardware threads total) the DRPU
occupies about 99% of the logic cells, 165 of the 288 block memo-
ries (57%), and 58 of the 96 18-bit multipliers (60%) of the FPGA
chip. These numbers show that we use the FPGA to its limits which
sometimes causes problems with routing and overmapping. The de-
sign contains 113 floating point units, mostly in the SPUs, TPUs,
and GU. The worst-case timing according to the Xilinx mapping
tools is 55 MHz, but the DRPU runs at 66 MHz as implemented.
At this clock speed the theoretical peak performance is 7.5 GFlops.

5.2 ASIC Design

For the ASIC version of the DRPU we mapped the HWML-
generated description to a set of standard cells in a 130nm CMOS
process from UMC [24]. For on-chip RAM we used memories gen-
erated by an SRAM memory compiler from Virtual Silicon. Phys-
ical assembly and post layout timing was done using the Cadence
SOC Encounter tools.

The ASIC version does not suffer from space limitations, thus we
increased the floating point data path to full 32-bit single-precision
width, including integer arithmetic and other features that had been
disabled in the FPGA version. To easily estimate performance we
configured the DRPU ASIC version in a similar way to the FPGA
version with packet size 4 and 32 packets. This also results in
113 floating point units on the DRPU ASIC. To make a conserva-
tive performance extrapolation, we additionally increased the cache
sizes and implemented four-way set associative caches for the SP
(16 KBytes), TP (16 KBytes), and GU (16 KBytes). The total core
size for this DRPU is 7mm x 7mm (49mm2) in the 130nm CMOS
process. The post layout timing estimates for the current version
are 161 MHz worst case (1.08V, 125◦C) and 299 MHz typical case
(1.25V, 25◦C). These speed estimates are approximately 70% of
the maximum possible speed of the on-chip memories generated
with our memory compiler, which shows room for further improve-
ments. A clock rate of 266 MHz should easily be achievable if the
chip would be fabricated and would have a theoretical peak perfor-



Figure 6: Some of the the scenes used for benchmarking the prototype: Scene6 (0.5k triangles), Office (34k triangles),
Mafia Spheres (20k triangles), Hand (17k triangles), and Gael (52k triangles). See Figure 1 for more benchmarking scenes.

mance of 30.0 GFlops.
A plot of the DRPU layout is shown in Figure 7 with the memo-

ries visible as the large blocks and some hardware units are labeled
and shaded. In total there are approximately 9 million non-memory
transistors in the DRPU (686k standard cells, 191k of them are flip
flops) and approximately 2.57 MBit of on-chip RAM in the caches
(0.6 MBit), register files (1.2 MBit), and other memory structures
(0.77 MBit) that are implemented in 280 generated memory blocks.

6 PERFORMANCE EVALUATION

DRPU FPGA: The fully functional FPGA prototype, configured as
described in Section 5.1, runs at 66 MHz with 1GB/s peak memory
bandwidth between the on-board SDRAM and the on-chip caches.
It turns out that half the peak memory bandwidth is sufficient for
most of our test scenes, thus for measurements we scaled the avail-
able bandwidth down to only 0.5 GB/s using some test circuits. The
performance of the DRPU FPGA is measured directly from the run-
ning hardware by counting the number of cycles required to update
spatial index structures and to compute the image (see Table 2).

DRPU ASIC: The timing of the DRPU ASIC, configured as de-
scribed in Section 5.2 is estimated from post layout timing analy-
sis using Cadence SOC Encounter. Because the architecture is the
same, and the ASIC clock rate is four times higher than for the
FPGA, we can derive performance numbers for this ASIC version
by scaling the FPGA framerates linearly. This is precise as long
as the external memory bandwidth could also be scaled linearly to
2.1 GB/s. Because of the larger caches of the ASIC this perfor-
mance estimate is quite conservative.

Todays high end rasterization graphics chips like the ATI R520
use a 90nm process with a 288mm2 die. This is much larger than our
DRPU ASIC version whose die is 49mm2 large and uses a 130nm
process. For this reason we estimate performance for two further
ASIC versions with larger die size and with a 90nm process (see
Table 3).

DRPU4 ASIC: First we maintain the process and put four copies
of the basic DRPU ASIC on a single chip. We did no ASIC layout
for this DRPU4 ASIC version, but it would fit on a 14mm x 14mm

OpenRT PS3- DRPU DRPU DRPU4 DRPU8
P4 Cell FPGA ASIC ASIC ASIC

Freq [MHz] 2,667.0 3,200.0 66.0 266.0 266.0 400.0
GFlops 10.6 256.0 7.5 30.0 120.2 361.6
process [nm] 130 90 90 130 130 90
die size [mm2] 145.0 221.0 - 49.0 196.0 186.6
bandwidth [GB/s] 8.5 25.0 0.5 2.1 8.5 25.6

Table 1: Comparison of the different hardware architectures: the
OpenRT software implementation running on a Pentium 4, the Cell
implementation, the DRPU FPGA implementation, the DRPU and
DRPU4 ASIC implementations on a 130nm process, and the extrap-
olation of the DRPU8 ASIC to a 90nm process.

die (196mm2) at 130nm if one ignores the area required for con-
necting the four DRPU copies to main memory. If run at 266 MHz
the 452 floating point units of the DRPU4 ASIC would provide a
peak floating point performance of 120.0 Gflops. The performance
could again be scaled up linearly if the chip would be connected to
a DDR memory interface with 8.5 GB/s peak bandwidth, which can
be implemented quite feasibly with two 64-bit wide DDR2 memory
interfaces clocked at effective 532 MHz.

DRPU8 ASIC: Next we extrapolate performance levels that
could be achieved with the DRPU design by going from our 130nm
process to a 90nm process. Because we don’t have access to this
process, we cannot provide precise timing results from Cadence
SOC Encounter, but extrapolations using constant field scaling are
reasonably accurate [31]. If one scales the dimensions of a pro-
cess bys using constant field scaling, then the frequency scales
by a factor of 1/s. If we extrapolate from our 130nm design to a
90nm process,s is 0.69 and we get a maximal operating frequency
of 299MHz/0.69= 433MHz for the DRPU. Thus we consider a
90nm version running at 400 MHz. Feature size decreases bys, thus
the DRPU ASIC has a die size of 4.83mmx 4.83mm= 23.3mm2

in the 90nm process, and we can instantiate eight copies on a
186.6mm2 die. To provide enough memory bandwidth we would
need to connect this DRPU8 ASIC to a 25.6 GB/s memory inter-
face. External memory interfaces at that speed are difficult to imple-
ment, but realistic if looking to current high end GPUs with external
bandwidths of more than 40 GB/s. Again the memory interface and
connection to the Rendering Units would consume additional die
area. The DRPU8 ASIC would have an additional 3 times speedup
over the DRPU4 ASIC, because of higher frequency and twice the
number of computational units. The 904 floating point units would
provide a peak floating point performance of 361 GFlops, which is
very close to the peak floating point performance of todays GPUs.
Because of the high rendering performance, a high speed PCI Ex-
press connection would be required to download the rendered pixels
for display.

Table 1 gives an overview of frequency, peak floating point per-
formance, and die characteristics for the FPGA version, the differ-
ent ASIC design versions, the Pentium 4 chip and the Cell processor
used for speed comparison.

We have not done detailed power analysis or estimation of any
of the ASIC versions, but we would expect power to be high, due
to the large number of floating point units and the computational
requirements of the rendering process. In this dimension we expect
no particular improvements over existing GPUs which also exhibit
high power consumption.

To show the possible performance, we have chosen a number
of benchmark scenes (see Figure 1 and Figure 6) that cover a
large fraction of possible scene characteristics. The scenes range
from very simple ones like the Shirley6 and Office scenes, to com-
plex ones (Conference) and the Gael level from Unreal Tournament
2004. The Mafia Spheres scene, shows a room containing four re-
flecting and one refracting sphere, to show secondary ray tracing



cycles FPGA cache hitrates DRAM
Scene triangles objects #rays update render framerate TP GU SP bandwidth
Shirley6 0.5k 1 1.5M - 14M 4.7 fps 98.6% 99.2% 85.7% 113 MB/s
Conference 282k 52 1.5M - 39M 1.7 fps 81.3% 85.1% 89.6% 164 MB/s
Office 34k 1 1.5M - 18M 3.6 fps 91.5% 93.7% 88.0% 103 MB/s
Mafia Room 15k 1 1.5M - 24M 2.8 fps 91.4% 96.3% 67.2% 186 MB/s
Mafia Spheres 20k 6 1.6M - 36M 1.8 fps 88.7% 96.1% 59.8% 210 MB/s
Hand 17k 2 1.3M 118k 13M 5.0 fps 91.8% 97.9% 75.3% 126 MB/s
Skeleton 16k 2 1.3M 113k 11M 5.9 fps 89.8% 97.5% 96.3% 73 MB/s
Helix 78k 2 1.5M 602k 18M 3.5 fps 80.0% 93.2% 87.2% 145 MB/s
Gael 52k 1 1.5M - 34M 1.9 fps 87.7% 91.4% 72.1% 188 MB/s
DynGael 85k 4 1.5M 121k 33M 2.0 fps 86.1% 91.6% 88.0% 154 MB/s

Table 2: Performance statistics of the DRPU FPGA prototype clocked at 66 MHz. For several scenes, the complexity in number of triangles,
instantiated objects, and number of rays shot per image at 1024x768 resolution are shown. Further, the table shows the number of cycles
required for updating the B-KD tree, for rendering the image, and the resulting framerate. Cache hitrates are shown for the TP, GU, and SP
cache. The low resulting external memory bandwidth is presented, showing the scalability of the approach. Phong shading is used including
textures and shadows. The cycles required to read back the framebuffer contents for display are not included (but would be below 1% for most
scenes). See Figures 1 and 6 for images of the scenes.

Scene triangles objects #rays DRPU FPGA DRPU ASIC DRPU4 ASIC DRPU8 ASIC
Shirley6 0.5k 1 1.5M 4.7 fps 18.8 fps 75.2 fps 225.6 fps
Conference 282k 52 1.5M 1.7 fps 6.7 fps 27.0 fps 81.2 fps
Office 34k 1 1.5M 3.6 fps 14.4 fps 57.6 fps 172.8 fps
Mafia Room 15k 1 1.5M 2.8 fps 11.2 fps 44.8 fps 134.4 fps
Mafia Spheres 20k 6 1.6M 1.8 fps 7.2 fps 28.8 fps 86.4 fps
Hand 17k 2 1.3M 5.0 fps 20.0 fps 80.0 fps 240.0 fps
Skeleton 16k 2 1.3M 5.9 fps 23.6 fps 94.4 fps 283.2 fps
Helix 78k 2 1.5M 3.5 fps 14.0 fps 56.0 fps 168.0 fps
Gael 52k 1 1.5M 1.9 fps 7.6 fps 30.4 fps 91.2 fps
DynGael 85k 4 1.5M 2.0 fps 8.0 fps 32.0 fps 96.0 fps

Table 3: Estimated performance of the DRPU versions for a number of benchmark scenes of varying complexity. We provide the number of
cycles required for updating of the B-KD tree and rendering of the images at 1024x768 resolution with shadows, Phong shading, and textures.
Frames per second are directly computed from the number of cycles required for the computation. The cycles required to read back the
framebuffer contents for display are not included (but would be below 1% for most scenes). See Figures 1 and 6 for images of the scenes.

DRPU DRPU DRPU4 DRPU8
Scene [fps] OpenRT Cell FPGA ASIC ASIC ASIC
Shirley6 3.2 180.0 5.0 20.0 80.0 240.0
Office 2.6 n/a 4.1 16.4 65.6 196.8
Conference 2.0 60.0 3.4 13.6 54.4 163.2
Gael 2.0 n/a 3.8 15.2 60.8 182.4

Table 4: Performance comparison of the OpenRT software implemen-
tation running on a Pentium 4 with 2.66 GHz, the Cell ray tracer,
the DRPU FPGA running at 66 MHz, post-layout estimates for the
DRPU ASIC, and estimates for the DRPU4 ASIC running at 266 MHz
and the DRPU8 ASIC running at 400 MHz. All performance numbers
are for 1024x768 resolution with phong shading including bilinear tex-
turing, vertex normal interpolation, and a single light source without
shadows.

effects. Some Poser [18] animations (Hand, Skeleton, and Helix)
show the support for dynamic scenes. The vertex positions and nor-
mals are precomputed by Poser, and uploaded via DMA for each
frame. The DynGael scene, shows the combination of the static
Gael level, with two dynamic skeleton instances.

We use a subset of these scenes for speed comparisons, see Ta-
ble 4. A comparison of the performance of the FPGA prototype
and the three ASIC versions against the OpenRT software ray tracer
running on an Intel Pentium-4 at 2.66 GHz [4] and a Cell implemen-
tation of ray tracing [3] are performed. The results show that the
FPGA version outperforms the software implementation by 40%
to 70% even though clocked at a 40 times lower frequency. The

DRPU8 ASIC version would outperform the software ray tracer by
a factor of up to 75. A comparison to a Cell implementation of ray
tracing shows up to 2.5 times higher performance, despite the hard-
ware complexity being similar (see Table 1), and the DRPU8 ASIC
performing much more complex shading (including textures). This
shows the efficiency of the DRPU architecture compared to general
purpose designs.

For the full set of test scenes, detailed statistics in Table 2 and
performance extrapolations in Table 3 are provided. The statistics
include the complexity of the scene, number of object instances,
and number of rays shot for computation. The scenes are rendered
with a realistically complex shader with more than 90 assembly
instructions to perform: bilinear texture lookup, diffuse term, spec-
ular term, light fall-off, vertex normal interpolation, vertex color
interpolation, and pixel accurate shadows. Table 2 further shows
the exact number of cycles required to update the B-KD trees, ren-
dering, and the resulting frame rate of the FPGA. The cache hit
rates of the direct mapped FPGA caches are an indicator for the
coherence of the computations, but typically are much higher than
90%. The hit-rates drop down especially for higher resolution tex-
tures that are accessed by the SP. As the ASIC versions implement
four-way set associative caches with twice the size as the FPGA,
much higher hit-rates are expected, which would reduce external
bandwidth even more.

The performance extrapolations of Table 3 show performance
for the DRPU FPGA, and all DRPU ASIC versions. If compar-
ing these performance values against Table 4, the numbers for the
Shirley6 and Office scene are surprisingly only slightly lower de-



spite containing shadows. This is because traversal and shading
can be performed in parallel and for these two simple scenes the
Ray Casting Units can trace the shadow ray at the same time as
the SP performs shading. For the test scenes, the estimated per-
formance of the DRPU8 ASIC is between 80 and 280 frames per
second. The performance mainly depends on the cost of the rays,
which increases with higher number of visible geometry elements,
and the total number of rays shot. Thus the performance of the
Mafia Spheres scene is lower than the Mafia Scene, because more
triangles are visible and more rays need to be shot due to the refrac-
tion and reflection effect.

The Gael level renders with more than 90 frames per second at
1024x768 resolution even with two animated Skeleton instances.
This is sufficient for game play and would leave much room for
improved image quality. For instance, it would be possible to im-
prove filtering of edges and shadows by using adaptive oversam-
pling techniques. These techniques take an additional pass over the
generated image to find regions where more rays could effectively
improve image quality.

The DRPU hardware architecture can render even highly dy-
namic scenes efficiently, as shown by the results of the Hand, Skele-
ton, and Helix animations. For these dynamic test scenes the num-
ber of cycles required to update the B-KD tree is about two orders
of magnitude below the render cycles, and rendering these anima-
tions causes little overhead.

7 CONCLUSIONS

This paper presents ASIC implementations of the programmable
DRPU architecture for efficient high performance ray tracing of
dynamic scenes. The DRPU contains a Shading Processor im-
plemented as a four-element vector floating point processor core
with support both for synchronous SIMD execution of packets of
threads and multithreading. It also contains custom hardware for
ray/triangle intersection and for traversing the B-KD tree which is
required for efficient ray tracing of dynamic scenes.

The FPGA prototype is fully working and makes for convincing
demonstrations of the power of this technique. We hope to fabricate
at least the single-DRPU ASIC to demonstrate the full potential of
this architecture. Measurements on the implemented FPGA pro-
totype, and timings based on a 130nm ASIC design indicate that
performance levels sufficient for game play are achievable, espe-
cially if it is possible to use a high end 90nm ASIC technology. A
DRPU would also offer much higher quality of image and realism
due to the use of recursive ray tracing rather than rasterization.

REFERENCES

[1] Alpha-Data. ADM-XRC-II. http://www.alphadata.uk.co, 2003.
[2] Arthur Appel. Some Techniques for Shading Machine Renderings of Solids.

SJCC, pages 27–45, 1968.
[3] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko Friedrich. Ray

Tracing on the CELL Processor. InIEEE Symposium on Interactive Ray Trac-
ing, 2006.

[4] Andreas Dietrich, Ingo Wald, Carsten Benthin, and Philipp Slusallek. The
OpenRT Application Programming Interface – Towards A Common API for
Interactive Ray Tracing. InProceedings of the 2003 OpenSG Symposium, pages
23–31, Darmstadt, Germany, 2003. EUROGRAPHICS Association.

[5] Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a gpu ray-
tracer. InHWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 15–22, New York, NY, USA, 2005.
ACM Press.

[6] Stuart A. Green. Parallel processing for computer graphics.MIT Press, pages
62–73, 1991.

[7] Stuart A. Green and Derek J. Paddon. A highly flexible multiprocessor solution
for ray tracing.The Visual Computer, 6(2):62–73, 1990.

[8] M. Porrmann H. Kalte and U. R̈uckert. Using a dynamically reconfigurable
system to accelerate octree based 3D graphics. Technical report, System and
Circuit Technology, University of Paderborn, 2000.

[9] D. Hall. The AR350: Today’s ray trace rendering processor. InProceedings of
the EUROGRAPHICS/SIGGRAPH workshop on Graphics Hardware - Hot 3D
Session, 2001.

[10] Hiroaki Kobayashi, Kenichi Suzuki, Kentaro Sano, and Nobuyuki Oba. In-
teractive Ray-Tracing on the 3DCGiRAM Architecture. InProceedings of
ACM/IEEE MICRO-35, 2002.

[11] Jonas Lext and Tomas Akenine-Möller. Towards Rapid Reconstruction for An-
imated Ray Tracing. InEurographics 2001 – Short Presentations, pages 311–
318, 2001.

[12] Tony T.Y. Lin and Mel Slater. Stochastic Ray Tracing Using SIMD Processor
Arrays. The Visual Computer, pages 187–199, 1991.

[13] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML,
1990.

[14] Tomas M̈oller and Ben Trumbore. Fast, minimum storage ray triangle intersec-
tion. Journal of Graphics Tools, 2(1):21–28, 1997.

[15] Jean-Christophe Nebel. A Mixed Dataflow Algorithm for Ray Tracing on the
CRAY T3E. InThird European CRAY-SGI MPP Workshop, September 1997.

[16] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter Pike
Sloan. Interactive ray tracing. InInteractive 3D Graphics (I3D), pages 119–
126, April 1999.

[17] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, and Larry Seiler.
The VolumePro real-time ray-casting system.Computer Graphics, 33, 1999.

[18] Poser. Poser Web Page.http://www.e-frontier.com, 2006.
[19] Timothy J. Purcell.Ray Tracing on a Stream Processor. PhD thesis, Stanford

University, 2004.
[20] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR – A Hard-

ware Architecture for Ray Tracing. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 27–36,
2002.

[21] Jörg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and Philipp
Slusallek. Realtime Ray Tracing of Dynamic Scenes on an FPGA Chip. In
Proceedings of Graphics Hardware, 2004.

[22] K. R. Subramanian.A Search Structure based on K-d Trees for Efficient Ray
Tracing. PhD thesis, The University of Texas at Austin, December 1990.

[23] Tomas Akenine-M̈oller Thomas Larsson. Strategies for bounding volume hier-
archy updates for ray tracing of deformable models. Technical report, February
2003.

[24] United Microelectronics Corporation. http://www.umc.com, 2005.
[25] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD

thesis, Computer Graphics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/.

[26] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Interactive Ray
Tracing of Dynamic Scenes. InProceedings of the IEEE Symposium on Parallel
and Large-Data Visualization and Graphics (PVG), 2003.

[27] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Interactive Global Illumina-
tion in Complex and Highly Occluded Environments. In Per H Christensen and
Daniel Cohen-Or, editors,Proceedings of the 2003 EUROGRAPHICS Sympo-
sium on Rendering, pages 74–81, Leuven, Belgium, June 2003.

[28] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies (revised version).Technical Re-
port, SCI Institute, University of Utah, No UUSCI-2006-023, 2006.

[29] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G Parker.
Ray Tracing Animated Scenes using Coherent Grid Traversal.ACM SIGGRAPH
2006, 2006.

[30] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive
Rendering with Coherent Ray Tracing.Computer Graphics Forum, 20(3):153–
164, 2001. (Proceedings of EUROGRAPHICS).

[31] Neil Weste and David Harris.CMOS VLSI Design: A Circuits and Systems
Perspective. Addison Wesley, 2005.

[32] Turner Whitted. An Improved Illumination Model for Shaded Display.CACM,
23(6):343–349, June 1980.

[33] Sven Woop, Erik Brunvand, and Philipp Slusallek. HWML: RTL/Structural
Hardware Description using ML. Technical report, Computer Graphics Lab,
Saarland University, 2006.

[34] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD Trees for Hardware
Accelerated Ray Tracing of Dynamic Scenes. InProceedings of Graphics Hard-
ware, 2006.

[35] Sven Woop, J̈org Schmittler, and Philipp Slusallek. RPU: A Programmable Ray
Processing Unit for Realtime Ray Tracing. InSIGGRAPH 2005 Conference
Proceedings, pages 434 – 444, 2005.

[36] Xilinx. Virtex-II. http://www.xilinx.com, 2003.


