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Abstract—Threaded Ray eXecution (TRaX) is a highly parallel
multithreaded multicore processor architecture designed for real-
time ray tracing. The TRaX architecture consists of a set of thread
processors that include commonly used functional units (FUs) for
each thread and that share larger FUs through a programmable
interconnect. The memory system takes advantage of the appli-
cation’s read-only access to the scene database and write-only
access to the frame buffer output to provide efficient data delivery
with a relatively simple memory system. One specific motivation
behind TRaX is to accelerate single-ray performance instead of
relying on ray packets in single-instruction-multiple-data mode
to boost throughput, which can fail as packets become incoherent
with respect to the objects in the scene database. In this paper,
we describe the TRaX architecture and our performance results
compared to other architectures used for ray tracing. Simulated
results indicate that a multicore version of the TRaX architecture
running at a modest speed of 500 MHz provides real-time ray-
traced images for scenes of a complexity found in video games. We
also measure performance as secondary rays become less coherent
and find that TRaX exhibits only minor slowdown in this case
while packet-based ray tracers show more significant slowdown.

Index Terms—Computer architecture, computer graphics, ray
tracing.

I. INTRODUCTION

T PRESENT, almost every personal computer has a ded-

icated processor that enables interactive 3-D graphics.
These graphics processing units (GPUs) implement the z-buffer
algorithm introduced in Catmull’s landmark University of Utah
dissertation [1]. In this algorithm, the inner loop iterates over all
triangles in the scene and projects those triangles to the screen.
It computes the distance to the screen (the z-value) at each pixel
covered by the projected triangle and stores that distance in the
z-buffer. Each pixel is updated to the color of the triangle (per-
haps through a texture lookup or a procedural texturing tech-
nique) unless a smaller distance, and, thus, a triangle nearer to
the screen, has already been written to the z-buffer (see Fig. 1).
A huge benefit of this approach is that all triangles can be
processed independently with no knowledge of other objects in
the scene. Current mainstream graphics processors use highly
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z-buffer

Fig. 1. z-buffer algorithm projects a triangle toward the nine-pixel screen and
updates all pixels with the distance to the eye (the “z” value) and the triangle’s
color unless a smaller distance is already written in the z-buffer.

efficient z-buffer rasterization hardware to achieve impressive
performance in terms of triangles processed per second. This
hardware generally consists of deep nonbranching pipelines
of vector floating-point (FP) operations as the triangles are
streamed through the GPU and specialized memory systems
to support texture lookups. However, the basic principle of
z-buffer rasterization, that triangles are independent, becomes
a bottleneck for highly realistic images. This assumption limits
shading operations to per-triangle or per-pixel computations
and does not allow for directly computing global effects such
as shadows, transparency, reflections, refractions, or indirect
illumination. Tricks are known to approximate each of these
effects individually, but combining them is a daunting problem
for the z-buffer algorithm.

Modern GPUs can interactively display several million trian-
gles in complex 3-D environments with image-based (lookup)
texture and lighting. The wide availability of GPUs has revolu-
tionized how work is done in many disciplines and has been a
boon to the hugely successful video game industry. While the
hardware implementation of the z-buffer algorithm has allowed
excellent interactivity at a low cost, there are (at least) three
classes of applications that have not benefited significantly from
this revolution:

1) those that have data sets much larger than a few million
triangles, such as vehicle design, landscape design, man-
ufacturing, and some branches of scientific visualization;

2) those that have nonpolygonal data not easily converted
into triangles;

3) those that demand high-quality shadows, reflection, re-
fraction, and indirect illumination effects, such as archi-
tectural lighting design, rendering of outdoor scenes, and
vehicle lighting design.

0278-0070/$26.00 © 2009 IEEE
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ray tracing

Fig. 2. Ray-tracing algorithm sends a 3-D half line (a “ray”) into the set of
objects and finds the closest one. In this case, the triangle 7% is returned.

These classes of applications typically use Whitted’s ray-
tracing algorithm [2]-[4]. The ray-tracing algorithm is better
suited to huge data sets than the z-buffer algorithm because its
natural use of hierarchical scene structuring techniques allows
image rendering time that is sublinear in the number of objects.
While z-buffers can use some hierarchical culling techniques,
the basic algorithm is linear with respect to the number of
objects in the scene. It is ray tracing’s larger time constant and
lack of a commodity hardware implementation that makes the
z-buffer a faster choice for data sets that are not huge. Ray trac-
ing is better suited for creating shadows, reflections, refractions,
and indirect illumination effects because it can directly simulate
the physics of light based on the light transport equation [5],
[6]. By directly and accurately computing composite global
visual effects using ray optics, ray tracing can create graphics
that are problematic for the z-buffer algorithm. Ray tracing
also allows flexibility in the intersection computation for the
primitive objects, which allows nonpolygonal primitives such
as splines or curves to be represented directly. Unfortunately,
computing these visual effects based on simulating light rays
is computationally expensive, particularly on a general-purpose
CPU. The ray-tracing algorithm currently requires many high-
performance CPUs to be interactive at full-screen resolution.

While the ray-tracing algorithm is not particularly parallel at
the instruction level, it is extremely (embarrassingly) parallel at
the thread level. Ray tracing’s inner loop considers each pixel
on the screen. At each pixel, a 3-D half line (a “ray”) is sent
into the set of objects and returns information about the closest
object hit by that ray. The pixel is colored (again, perhaps using
texture lookups or a procedurally computed texture) according
to this object’s properties (Fig. 2). This line query, also known
as “ray casting,” can be repeated recursively to determine
shadows, reflections, refractions, and other optical effects. In
the extreme, every ray cast in the algorithm can be computed
independently. What is required is that every ray has read-only
access to the scene database and write-only access to a pixel
in the frame buffer. Importantly, threads never have to commu-
nicate with other threads (except to partition work among the
threads, which is done using an atomic increment instruction
in our implementation). This type of memory utilization means
that a relatively simple memory system can keep the multiple
threads supplied with data.

To summarize, the parallelization of rasterizing happens
by processing triangles in parallel through multiple triangle-
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processing pipelines that can operate concurrently. Ray tracing
processes pixels/rays in parallel. Each pixel corresponds to
a primary ray (or a set of primary rays in an oversampled
implementation) from the eye into the scene. These primary
rays may spawn additional secondary rays, but all those rays
can continue to be processed concurrently with every other ray.

This paper is an extended version of a previous conference
paper [7] in which we propose a custom processor architecture
for ray tracing called Threaded Ray eXecution (TRaX). This
paper adds to that paper additional details of the memory sys-
tem and significant results related to TRaX’s ability to handle
noncoherent secondary rays.

The TRaX processor exploits the thread-rich nature of ray
tracing by supporting multiple-thread contexts [thread proces-
sors (TPs)] in each core. We use a form of dynamic data-
flow style instruction issue to discover parallelism between
threads and share large less frequently used functional units
(FUs) between TPs. We explore tradeoffs between the number
of TPs versus the number of FUs per core. The memory
access style in ray tracing means that a relatively simple
memory system can keep the multiple threads supplied with
data. However, adding detailed image-based (lookup) textures
to a scene can dramatically increase the required memory
bandwidth (as it does in a GPU). We also explore procedural
(computed) textures as an alternative that trades computation
for memory bandwidth. The resulting multiple-thread core can
be repeated on a multicore chip because of the independent
nature of the computation threads. We evaluate the performance
of our architecture using two different ray-tracing applications:
a recursive Whitted-style ray tracer [2]-[4] that allows us to
compare directly to other hardware ray-tracing architectures
and a path tracer [6], [8] that allows us to explore how the
TRaX architecture responds to incoherent secondary rays, ar-
guably the most important types of rays when considering a ray
tracer [9].

This paper does not analyze TRaX’s ability to handle dy-
namically changing scenes. We assume that the necessary data
structures are updated on the host machine as needed; thus,
the performance we measure is for rendering a single frame.
We are, however, currently exploring the possibility of dynamic
scene updating on the TRaX architecture.

II. BACKGROUND

Because most applications are using larger and larger models
(Greenberg has argued that typical model sizes are doubling
annually [10]), and because most applications are demanding
increasingly more visual realism, we believe the trends favor
ray tracing (either alone or in combination with rasterization
for some portions of the rendering process). Following the
example of GPUs, we also believe that a special-purpose ar-
chitecture can be made capable of interactive ray tracing for
large geometric models. Such special-purpose hardware has
the potential to make interactive ray tracing ubiquitous. Ray
tracing can, of course, be implemented on general-purpose
CPUs and on specially programmed GPUs. Both approaches
have been studied, along with a few previous studies of custom
architectures.
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A. GPUs

Graphics processing is an example of a type of computation
that can be streamlined in a special-purpose architecture and
achieve much higher processing rates than on a general-purpose
processor. This is the insight that enabled the GPU revolution in
the 1980s [11]-[14]. A carefully crafted computational pipeline
for transforming triangles and doing depth checks along with an
equally carefully crafted memory system to feed those pipelines
makes the recent generation of z-buffer GPUs possible [15],
[16]. Current GPUs have up to hundreds of FP units on a single
GPU and an aggregate memory bandwidth of 20-80 GB/s from
their local memories. That impressive local memory bandwidth
is largely to support frame-buffer access and image-based
(lookup) textures for the primitives. These combine to achieve
graphics performance that is orders of magnitude higher than
what could be achieved by running the same algorithms on a
general-purpose processor.

The processing power of a GPU depends, to a large degree,
on the independence of each triangle being processed in the
z-buffer algorithm. This is what makes it possible to stream
triangles through the GPU at rapid rates and what makes it
difficult to map ray tracing to a traditional GPU. There are
three fundamental operations that must be supported for ray
tracing:

1) Traversal: traversing the acceleration structure, which
is a spatial index that encapsulates the scene objects to
identify a set of objects that the ray is likely to intersect
with;

2) Intersection: intersecting the ray with the primitive ob-
jects contained in the element of the bounding structure
that is hit;

3) Shading: computing the illumination and color of the
pixel based on the intersection with the primitive object
and the collective contributions from the secondary ray
segments. This can also involve texture lookups or proce-
dural texture generation.

The traversal and intersection operations require branching,
pointer chasing, and decision making in each thread, and global
access to the scene database: operations that are relatively
inefficient in a traditional z-buffer-based architecture.

While it is possible to perform ray tracing on GPUs [17]-
[19], until recently, these implementations have not been faster
than the best CPU implementations, and they require the entire
model to be in graphics card memory. While some research
continues on improving such systems, the traditional GPU
architecture makes it unlikely that the approach can be used
on large geometric models. In particular, the inefficiency of
branching based on computations performed on the GPU and
the restricted memory model are serious issues for ray tracing
on a traditional GPU.

The trend, however, in a general-purpose GPU (GPGPU)
architecture is toward more and more programmability of the
graphics pipeline. Current high-end GPGPUs, such as the G80
architecture from nVidia [20], support both arbitrary memory
accesses and branching in the instruction set and can thus,
in theory, do both pointer chasing and frequent branching.
However, a G80-type GPGPU assumes that every set of 32
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threads (a “warp”) essentially executes the same instruction and
that they can thus be executed in a single-instruction—multiple-
data (SIMD) manner. Branching is realized by (transparently)
masking out threads. Thus, if branching often leads to diverging
threads, very low utilization and performance will occur (simi-
lar arguments apply to pointer chasing). Results for parts of the
ray-tracing algorithm on a G80 have been reported [19], and a
complete ray tracer has been demonstrated by nVidia using a
collection of four of their highest performance graphics cards,
but little has been published about the demo [21].

B. General CPU Architectures

General-purpose architectures are also evolving to be per-
haps more compatible with ray-tracing-type applications. Al-
most all commodity processors are now multicore and include
SIMD extensions in the instruction set. By leveraging these ex-
tensions and structuring the ray tracer to trace coherent packets
of rays, researchers have demonstrated good frame rates even
on single CPU cores [22], [23]. The biggest difference in our
approach is that we do not depend on the coherence of the ray
packet to extract thread-level parallelism. Thus, our hardware
should perform well even for diverging secondary rays used in
advanced shading effects for which grouping the individual rays
into coherent packets may not be easy.

In addition to general multicore chips, direct support for
multithreading is becoming much more common and appears
even in some commercially released processors such as the
Intel Netburst architecture [24], the IBM Power5 architecture
[25], and the Sun Niagara [26]. The biggest limiting factor for
these general architectures is that the individual processors are
heavily underutilized while performing ray tracing. This is due
largely to the relatively small number of FP resources on a
CPU and the highly branch-dependent behavior of ray-tracing
threads. We believe that a larger number of simpler cores will
perform better than fewer more complex cores of a general CPU
due to providing a more targeted set of computation resources
for the application.

The IBM Cell processor [27], [28] is an example of an ar-
chitecture that might be quite interesting for ray tracing. With a
64-b in-order power processor element core (based on the IBM
Power architecture) and eight synergistic processing elements
(SPEs), the Cell architecture sits somewhere between a general
CPU and a GPU-style chip. Each SPE contains a 128 x 128
register file, 256 kb of local memory (not a cache), and four FP
units operating in SIMD. When clocked at 3.2 GHz, the Cell has
a peak processing rate of 200 GFlops. Researchers have shown
that, with careful programming and with using only shadow
rays (no reflections or refractions) for secondary rays, a ray
tracer running on a Cell can run four to eight times faster than
a single-core x86 CPU [29]. In order to get those speedups, the
ray tracer required careful mapping into the scratch memories
of the SPEs and management of the SIMD branching supported
in the SPEs. We believe that our architecture can improve
on those performance numbers while not relying on coherent
packets of rays executing in an SIMD fashion and while using
considerably less programmer effort because we do not rely on
a programmer-managed scratch memory.
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C. Ray-Tracing Hardware

Other researchers have developed special-purpose hardware
for ray tracing [30], [31]. The most complete of these are the
SaarCOR [32], [33] and ray processing unit (RPU) [34], [35]
architectures from Saarland University. SaarCOR is a custom
hard-coded ray trace processor, and RPU has a custom kd-
tree traversal unit with a programmable shader. Both are imple-
mented and demonstrated on a field-programmable gate array.
All high-performance ray tracers organize the scene being
rendered into an “acceleration structure” of some sort, which
permits fast traversal of the scene volume to quickly arrive
at the primitive geometry. Common structures are kd-trees,
bounding volume hierarchies (BVHs), oct-trees, and grids. The
traversal of this structure is done in hardware in the Saarland
architectures and requires that a kd-tree be used. Only when a
primitive is encountered that the programmable shader is called
to determine the color of that primitive (and, thus, the color of
the pixel).

The programmable portion of the RPU is known as the
shading processor and is used to determine the shading (color)
of each pixel once the intersected triangle primitive is deter-
mined. This portion consists of four four-way vector cores
running in SIMD mode with 32 hardware threads supported
on each of the cores. Three caches are used for shader data,
kd-tree data, and primitive (triangle) data. Cache coherence is
quite good for primary rays (initial rays from the eye to the
scene) and adequate for secondary rays (shadows, reflections,
etc.). With an appropriately described scene (using kd-trees
and triangle data encoded with unit-triangle transformations),
the RPU can achieve very impressive frame rates, particularly
when extrapolated to a potential CMOS application-specific
integrated circuit implementation [35].

Our design is intended to be more flexible than the RPU
by having all portions of the ray-tracing algorithm be pro-
grammable, allowing the programmer to decide the appropriate
acceleration structure and primitive encoding, and by acceler-
ating single-ray performance rather than using four-ray SIMD
packets. There is, of course, a cost in terms of performance for
this flexibility, but if adequate frame rates can be achieved, it
will allow our architecture to be used in a wider variety of
situations. There are many other applications that share the
thread-parallel nature of ray tracing.

Most recently, there have been proposals for multicore sys-
tems based on simplified versions of existing instruction set ar-
chitectures that may be useful for ray tracing. These approaches
are closest in spirit to our architecture and represent work that
is concurrent with ours; thus, detailed comparisons are not yet
possible. Both of these projects involve multiple simplified in-
order cores with small-way multithreading, and both explicitly
evaluate ray tracing as workload. The Copernicus approach
[36] attempts to leverage existing general-purpose cores in
a multicore organization rather than developing a specialized
core specifically for ray tracing. As a result, it requires more
hardware to achieve the same performance and will not exceed
100 million rays per second unless scaling to 115 cores at
a 22-nm process. A commercial approach, called Larrabee
[37], is clearly intended for general-purpose computing and
rasterizing graphics, as well as ray tracing, and makes heavy use
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of SIMD in order to gain performance. Because it is intended
as a more general-purpose processor, Larrabee also includes
coherency between levels of its caches, something which TRaX
avoids because of its more specialized target. This coherency is
accomplished using a ring network that communicates between
local caches, which adds complexity to the architecture.

D. Target Applications

There are several applications, such as movies, architecture,
and manufacturing, that rely on image quality and need shad-
ows and reflections. These applications already use batch ray
tracing but would benefit greatly from interactive ray tracing.

Other applications are not currently close to being interactive
on GPUs regardless of image quality because their number of
primitive objects N is very large. These include many scientific
simulations [38], the display of scanned data [39], and terrain
rendering [40]. While level-of-detail techniques can sometimes
make display of geometrically simplified data possible, such
procedures typically require costly preprocessing and can cre-
ate visual errors [41].

Simulation and games demand interactivity and currently
use z-buffer hardware almost exclusively. However, they spend
a great deal of computational effort and programmer time
creating complicated procedures for simulating lighting effects
and reducing N by model simplification. In the end, they have
imagery of inferior quality to that generated by ray tracing. We
believe that those industries would use ray tracing if it was fast
enough.

We have customized the hardware in our simulator to per-
form well for ray tracing, which is our primary motivation.
While TRaX is programmable and could be used for other
applications, we have not explored TRaX’s performance for
a more robust range of applications. There are certainly other
multithreaded applications that might perform very well. How-
ever, one major restriction on other applications running on
TRaX is the (intentional) lack of coherence between the caches
on the chip, which would hinder applications with substantial
communication between threads.

III. TRaX ARCHITECTURE

Threads represent the smallest division of work in a ray-
traced scene; thus, the performance of the entire system de-
pends on the ability of the architecture to flexibly and efficiently
allocate functional resources to the executing threads. As such,
our architecture consists of a set of TPs that include some FUs
in each processor and that share other larger FUs between TPs.
A collection of these TPs, their shared FUs, issue logic, and
shared L2 cache are collected into a “core.”

A full chip consists of many cores, each containing many
TPs, sharing an on-chip L2 cache and off-chip memory and I/O
bandwidth. Because of the parallel nature of ray tracing, threads
(and, thus, cores) have no need to communicate with each other
except to atomically divide the scene. Therefore, a full on-chip
network is neither provided nor needed. In order to support
multichip configurations, off-chip bandwidth is organized into
lanes, which can be flexibly allocated between external memory
and other I/O needs.
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Fig. 3. (a) Multicore chip layout. (b) Core block diagram. (c) TP state.

A. TP

Each TP in a TRaX core can execute its own thread code,
where a software thread corresponds to a ray. Each thread
maintains a private program counter, a register file, and a small
instruction cache. The register file is a simple two-read one-
write SRAM block. Because of the complexity involved in
forwarding data between FUs, all results are written back to
the register file before they can be accessed by the consuming
instruction. Fig. 3(c) shows these FUs as well as the register file.
The type and number of these FUs are variable in our simulator.
More complex FUs are shared by the TPs in a core.

Instructions are issued in order in each TP to reduce the
complexity at the thread level. The execution is pipelined with
the fetch and decode, each taking one cycle. The execution
phase requires a variable number of cycles, depending on the
FU required, and the writeback takes a final cycle. Instructions
issue in order but may complete out of order. Thread processing
stalls primarily if the needed data are not yet available in the
register file (using a simple scoreboard) or if the desired FU is
not available, but correct single-thread execution is guaranteed.

Because issue logic is external to the thread state (imple-
mented at the core level), there is very little complexity in terms
of dependence checking internal to each thread. A simple table
maintains instructions and their dependences. Instructions enter
the table in a first-in—first-out fashion, in program order, so that
the oldest instruction is always the next available instruction.
Issue logic checks only the status of this oldest instruction.
Single-thread performance is heavily dependent on the pro-
grammer/compiler who must order instructions intelligently to
hide FU latencies as often as possible.

B. Collection of Threads in a Core

Each of the multiple cores on a chip consists of a set of
simple TPs with shared L1 data cache and shared FUs, as
shown in Fig. 3(b). Each TP logically maintains a private L1
instruction cache (more accurately, a small set of TPs shares a
multibanked I-cache). However, all threads in a core share one
multibanked L1 data cache of a modest size (2048 lines of 16 B
each, directly mapped, and with four banks; see Section VI-A).
All cores on a multicore chip share an L2 unified instruction

and data cache. Graphics processing is unique in that large
blocks of memory are either read-only (e.g., scene data) or
write-only (e.g., the frame buffer). To preserve the utility of
the cache, write-once data are written around the cache. For
our current ray-tracing benchmarks, no write data need to be
read back; thus, all writes are implemented to write around
the cache (directly to the frame buffer). Separate cached and
noncached write assembly instructions are provided to give the
programmer control over which kind of write should occur.
This significantly decreases thrashing in the cache by filtering
out the largest source of pollution. Hence, cache hit rates are
high, and threads spend fewer cycles waiting on return data
from the memory subsystem. In the future, we plan to explore
using read-around and streaming techniques for certain types
of data that are known to be touch-once. Currently, the choice
of read-around or write-around versus normal cached memory
access is made by the programmer.

Each shared FU is independently pipelined to complete
execution in a given number of cycles, with the ability to
issue a new instruction each cycle. In this way, each thread is
potentially able to issue any instruction on any cycle. With the
shared FUs, memory latencies, and possible dependence issues,
not all threads may be able to issue on every cycle. The issue
unit gives threads priority to claim shared FUs in a round-robin
fashion.

Each TP controls the execution of one ray thread. Because
the parallelism we intend to exploit is at the thread level, and not
at the instruction level inside a thread, many features commonly
found in modern microprocessors, such as out-of-order exe-
cution, complex multilevel branch predictors, and speculation,
are eliminated from our architecture. This allows available
transistors, silicon area, and power to be devoted to parallelism.
In general, complexity is sacrificed for expanded parallel execu-
tion. This will succeed in offering high-performance ray tracing
if we can keep a large number of threads issuing on each cycle.
Our results show that, with 32 TPs per core, close to 50% of
the threads can issue on average in every cycle for a variety
of different scenes using an assembly-coded Whitted-style ray
tracer [7] and a path tracer coded in a C-like language [9].

TRaX is specifically designed to accelerate single-ray per-
formance and to exploit thread-level parallelism using multiple
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TPs and cores. Many other ray-tracing architectures [19], [29],
[33], [34], [36], [37], [42], [43] exploit parallelism using SIMD
to execute some number of the same instructions at the same
time. This technique does not scale well if the rays in the
SIMD bundle become less coherent with respect to the scene
objects they intersect [9]. In that case, what was a single SIMD
instruction will have to be repeated for each of the threads
as they branch to different portions of the scene and require
different intersection tests and shading operations. Because our
threads are independent, we do not have to mask off results of
our FU operations.

C. Multicore Chip

Our overall chip design [Fig. 3(a)] is a die consisting of an
L2 cache with an interface to off-chip memory and a number
of repeated identical cores with multiple TPs each. Due to the
low communication requirements of the threads, each core only
needs access to the same read-only memory and the ability
to write to the frame buffer. The only common memory is
provided by an atomic increment instruction that provides a
different value each time the instruction is executed.

The L2 cache is assumed to be banked similarly to the L1
cache to allow parallel accesses from the L1 caches of the many
cores on the chip. A number of miss status holding registers
(MSHRs) are provided per core, and both the number banks
and number of MSHRs are parameterized in our simulations.
It should be noted that, for the work reported in this paper,
the L2 cache was not modeled explicitly (see Section V for
more details). Instead, all misses in the L1 cache were treated
as a fixed latency to memory intended to approximate the
average L2 latency. The modeled latency to L2 was on the
order of 20 times the latency of L1 hits. Ongoing simulations
have added explicit models for the L2 cache and DRAM, but
those numbers are not all available yet. We are finding that our
original assumptions are not too far off though.

IV. RAY-TRACING APPLICATIONS

Some of our test programs are written directly in an assembly
language. Others are written in a higher level language designed
for our architecture. The TRaX programming language is a
simple C-like language with some extensions inspired by the
RenderMan shading language [44] to allow for ease of writing
a ray-tracing application. The language is compiled into TRaX
assembly for the simulator by our simple custom compiler.

To evaluate our architecture, we have developed two different
ray-tracing systems.

e Whitted-Style Ray Tracer. This implements a recursive
ray tracer that provides various shading methods, shadows
from a single point light source, and BVH traversal. It is
written in TP assembly language.

» Path Tracer. This application is written in TRaX language
described previously. It computes global illumination in
the scene using a single point light source and using Monte
Carlo-sampled Lambertian shading [4].

The test scenes we are using, listed in Table I with some

basic performance numbers, exhibit some important properties.
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TABLE 1
SCENE DATA WITH RESULTS FOR 1 AND 16 CORES, EACH WITH 32 TPs,
AND PHONG SHADING ESTIMATED AT 500 MHz

Scene Triangles BVH Nodes FPS (1)  FPS (16)
conference 282664 266089 1.4282 22.852
sponza 66454 58807 1.1193 17.9088
cornell 32 33 4.6258 74.012

The Cornell box is important because it represents the simplest
type of scene that would be rendered. It gives us an idea of
the maximum performance possible by our hardware. Sponza,
on the other hand, has over 65000 triangles and uses a BVH
with over 50000 nodes. The Conference Room scene is an
example of a reasonably large and complex scene with around
300000 triangles. This is similar to a typical modern video
game scene. Even more complicated scenes, including dynamic
components, will be included in testing as more progress
is made.

A. Whitted-Style Ray Tracer

This is a basic recursive ray tracer that provides us with a
baseline that is easily compared to other published results. In
addition to controlling the depth and type of secondary rays,
another parameter that can be varied to change its performance
is the size of the tiles assigned to each thread to render at
one time. Originally, the screen would be split into 16 x 16
pixel squares, and each thread would be assigned one tile to
render. While this is a good idea for load balancing among the
threads, we found that it did not produce the best performance.
Instead, we changed the tiles to be single pixels and assigned
those to threads in order. This seemingly minor change was able
to increase the coherence of consecutive primary rays (putting
them closer together in screen space) and make the cache hit
rate much higher. The increased coherence causes consecutive
rays to hit much of the same scene data that have already
been cached by recent previous rays, as opposed to each thread
caching and working on a separate part of the scene.

Currently, the pixels are computed row by row straight across
the image. As we advance the ray tracer further, we will use a
more sophisticated space filling method such as a Z curve. This
method will trace rays in a pattern that causes concurrent rays
to stay clustered closer together, which makes them more likely
to hit the same nodes of the BVH, increasing cache hit rate.

1) Shading Methods: Our ray tracer implements two of the
most commonly used shading methods in ray tracing: simple
diffuse scattering and Phong lighting for specular highlights
[45], [46]. We also include simple hard shadows from a point
light source. Shadow rays are generated and cast from each
intersected primitive to determine if the hit location is in
shadow (so that it is illuminated only with an ambient term)
or lit (so that it is shaded with ambient, diffuse, and Phong
lighting).

Diffuse shading assumes that light scatters in every direction
equally, and Phong lighting adds specular highlights to simulate
shiny surfaces by increasing the intensity of the light if the view
ray reflects straight into a light source. These two shading meth-
ods increase the complexity of the computation per pixel, in-
creasing the demand on our FUs. Phong highlights particularly
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Fig. 4. Test scenes rendered on our TRaX architectural simulator. (From left to right) Cornell (rendered with our Whitted-style ray tracer), Sponza (rendered
with our Whitted-style ray tracer), Sponza (rendered with our Whitted-style ray tracer with procedural textures), and Conference (rendered with our path tracer).

These are standard benchmarking scenes for ray tracing.

increase complexity, as they involve taking an integer power, as
can be seen in the standard lighting model

Iy = kaia + » _ (ka(L - N)ig + ko(R- V)i,
lights

The I, term is the shade value at each point which uses
constant terms for the ambient k,, diffuse k4, and specular kg
components of the shading. The « term is the Phong exponent
that controls the shininess of the object by adjusting the spec-
ular highlights. The 7 terms are the intensities of the ambient,
diffuse, and specular components of the light sources.

2) Procedural Texturing: We also implement procedural
textures, i.e., textures which are computed based on the geom-
etry in the scene, rather than an image texture which is sim-
ply loaded from memory. Specifically, we use Perlin noise
with turbulence [47], [48]. These textures are computed using
pseudorandom mathematical computations to simulate natural
materials, which adds a great deal of visual realism and in-
terest to a scene without the need to store and load complex
textures from memory. The process of generating noise is quite
computationally complex. First, the texture coordinate on the
geometry where the ray hit is used to determine a unit lattice
cube that encloses the point. The vertices of the cube are hashed
and used to look up eight precomputed pseudorandom vectors
from a small table. For each of these vectors, the dot product
with the offset from the texture coordinate to the vector’s
corresponding lattice point is found. Then, the values of the
dot products are blended using either Hermite interpolation (for
classic Perlin noise [47]) or a quintic interpolant (for improved
Perlin noise [49]) to produce the final value. More complex
pattern functions, such as turbulence produced through spectral
synthesis, sum the multiple evaluations of Perlin noise for each
point shaded. There are 672 FP operations in our code to
generate the texture at each pixel. We ran several simulations,
comparing the instruction counts of an image with and without
noise textures. We found that there are, on average, 50% more
instructions required to generate an image where every surface
is given a procedural texture than an image with no textures.

Perlin noise increases visual richness at the expense of com-
putational complexity, while not significantly affecting memory
traffic. The advantage of this is that we can add more FUs at
a much lower cost than adding a bigger cache or more band-

widths. Conventional GPUs require an extremely fast memory
bus and a very large amount of RAM for storing textures [15],
[16]. Some researchers believe that, if noise-based procedural
textures were well supported and efficient, many applications,
specifically video games, would choose those textures over
the memory-intensive image-based textures that are used today
[50]. An example of a view of the Sponza scene rendered with
our Perlin noise-based textures can be seen in Fig. 4.

B. Path Tracer Application

In order to explore the ability of our architecture to maintain
performance in the face of incoherent rays that do not respond
well to packets, we built a path tracer designed so that we could
carefully control the coherence of the secondary rays. Our path
tracer is written in the TRaX language described previously and
is designed to eliminate as many variables as possible that could
change coherence. We use a single point light source and limit
incoherence to Monte Carlo-sampled Lambertian shading with
no reflective or refractive materials [4]. Every ray path is traced
to the same depth: There is no Russian roulette or any other
dynamic decision making that could change the number of rays
cast. This is all to ensure that we can reliably control secondary
ray coherence for these experiments. A more fully functional
path tracer with these additional techniques could be written
using the TRaX programming language, and we expect it would
have similar performance characteristics.

Each sample of each pixel is controlled by a simple loop. The
loop runs D times, where D is the specified max depth. For
each level of depth, we cast a ray into the scene to determine
the geometry that was hit. From there, we cast a single shadow
ray toward the point light source to determine if that point
receives illumination. If so, this ray contributes light based
on the material color of the geometry and the color of the
light. As this continues, light is accumulated into the final pixel
color for subsequent depth levels. The primary ray direction
is determined by the camera, based on which pixel we are
gathering light for. Secondary (lower depth) rays are cast from
the previous hit point and are randomly sampled over a cosine-
weighted hemisphere, which causes incoherence for higher ray
depths.

Secondary rays are randomly distributed over the hemisphere
according to a bidirectional reflectance distribution function
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Fig. 5.

(BRDF) [51], [52]). To compute a cosine-weighted Lambertian
BRDF, a random sample is taken on the area of a cone with the
major axis of the cone parallel to the normal of the hit geometry
and the vertex at the hit point. As an artificial benchmark, we
limit the angle of this cone anywhere from 0° (the sample is
always taken in the exact direction of the normal) to 180° (cor-
rect Lambertian shading on a full hemisphere). By controlling
the angle of the cone, we can control the incoherence of the
secondary rays. The wider the cone angles, the less coherent the
secondary rays become, as they are sampled from a larger set
of possible directions. The effect of this can be seen in Fig. 5.

V. DESIGN EXPLORATION

We have two TRaX simulators: a functional simulator that
executes TRaX instructions by running them on the PC and a
cycle-accurate simulator that simulates, in detail, the execution
of a single core with 32 threads and associated shared FUs. The
functional simulator executes much more quickly and is very
useful for debugging applications and generating images.

The cycle-accurate simulator runs much more slowly than
the functional simulator and is used for all performance results.
Given the unique nature of our architecture, it was not reason-
able to adapt available simulators to our needs. In the style
of Simplescalar [53], our cycle-accurate simulator allows for
extensive customization and extension. Memory operations go
through the L1 cache and to the L2 with conservative latencies
and variable banking strategies.

For each simulation, we render one frame in one core from
scratch with cold caches. The instructions are assumed to be
already in the instruction cache since they do not change from
frame to frame. The results we show are therefore an accurate
representation of changing the scene memory on every frame
and requiring invalidating the caches. The results are conserva-
tive because, even in a dynamic scene, much of the scene might
stay the same from frame to frame and thus remain in the cache.
Statistics provided by the simulator include total cycles used to
generate a scene, FU utilization, thread utilization, thread stall
behavior, memory and cache bandwidth, memory and cache
usage patterns, and total parallel speedup.

Our ray-tracing code was executed on simulated TRaX cores
having between 1 and 256 TPs, with issue widths of all function
units except memory, varying between 1 and 64 (memory was
held constant at a single issue). Images may be generated for
any desired screen size. Our primary goal for the current design

Cornell box scene showing the visual change as the sampling angle increases in our path tracer. (Starting from left) 0°, 30°, 60°, and 180° on the right.

TABLE 1I
DEFAULT FU MiIx (500-MHz CYCLES)
Latency

Unit Name  Number of units  (cycles)
IntAddSub 1 / thread 1
IntMul 1 / 8 threads 2
FPAddSub 1 / thread 2
FPMul 1/ 8 threads 3
FPComp 1 / thread 1
FPInvSqrt 1/ 16 threads 15
Conversion 1 / thread 1
Branch 1 / thread 1
Cache 1 (mult. banks) varies

phase is to determine the optimal allocation of transistors to
thread-level resources, including FUs and thread state, in a
single core to maximize utilization and overall parallel speedup.
We are also looking carefully at memory models and memory
and cache usage to feed the parallel threads (and parallel cores
at the chip level).

A. FUs

For a simple ray casting application, large complex instruc-
tion sets such as those seen in modern x86 processors are
unnecessary. Our architecture implements a basic set of FUs
with a simple but powerful instruction set architecture. We
include bitwise instructions; branching; FP/integer conversion;
memory operations; FP and integer add, subtract, multiply,
reciprocal; and FP compare. We also include reciprocal square
root because that operation occurs with some frequency in
graphics code for normalizing vectors.

FUs are added to the simulator in a modular fashion, allowing
us to support arbitrary combinations and types of FUs and
instructions. This allows very general architectural exploration
starting from our basic thread-parallel execution model. We
assume a conservative 500-MHz clock which was chosen based
on the latencies of the FUs that were synthesized using Synop-
sys Design Compiler and DesignWare libraries [54] and well-
characterized commercial CMOS cell libraries from Artisan
[55]. Custom-designed function units such as those used in
commercial GPUs would allow this clock rate to be increased.

We first chose a set of FUs to include in our machine-
level language, shown in Table II. This mix was chosen by
separating different instruction classes into separate dedicated
FUs. We implemented our ray casting benchmarks using these
available resources and then ran numerous simulations, varying
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Fig. 6. Single-core performance as cache issue width is varied.

the number of threads and the width of each FU. All execution
units are assumed to be pipelined, including the memory unit.

Each thread receives its own private FP Add/Sub execu-
tion unit. FP multiply is a crucial operation as cross and dot
products, both of which require multiple FP multiplies and are
common in ray-tracing applications. Other common operations
such as blending also use FP multiplies. The FP multiplier is
a shared unit because of its size, but due to its importance, it
is only shared among a few threads. The FP Inv FU handles
divides and reciprocal square roots. The majority of these
instructions come from our box test algorithm, which issues
three total FP Inv instructions. This unit is very large and less
frequently used; hence, it is shared among a greater number
of threads. We are also exploring the possibility of including a
custom noise function as a shared FU that would allow the rapid
generation of gradient noise used for procedural texturing (see
Section IV-A2).

VI. RESULTS

Results are generated for a variety of TP configurations and
using both our Whitted-style ray tracer and path tracer.

A. Single-Core Performance (Fig. 6)

Many millions of cycles of simulation were run to charac-
terize our proposed architecture for the ray-tracing application.
We used frames per second as our principle metric extrapolated
from single-core results to multicore estimates. This evaluation
is conservative in many respects since much of the scene
data required to render the scene would likely remain cached
between consecutive renderings in a true 30-fps environment.
However, it does not account for the repositioning of objects,
light sources, and viewpoints. The results shown here describe
a preliminary analysis based on simulation.

1) Area: We target 200 mm? as a reasonable die size for
a high-performance graphics processor. We used a low-power
65-nm library to conservatively estimate the amount of per-
formance achievable in a high-density highly utilized graph-
ics architecture. We also gathered data for high-performance
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TABLE III
AREA ESTIMATES (PRELAYOUT) FOR FUs USING ARTISAN CMOS
LIBRARIES AND SYNOPSYS. THE 130-nm LIBRARY IS A
HIGH-PERFORMANCE CELL LIBRARY, AND THE 65-nm LIBRARY IS A
LOW-POWER CELL LIBRARY. SPEED IS SIMILAR IN BOTH LIBRARIES

Area ( /.u112)

Resource Name 130nm 65nm
2kx16byte cache 1,527,5719 804,063
(four banks / read ports)

128%x32 RF 77,533 22,000(est.)
(1 Write 2 Read ports)

Integer Add/Sub 1,967 577
Integer Multiply 30,710 12,690
FP Add/Sub 14,385 2,596
FP Multiply 27,194 8,980
FP Compare 1,987 690
FP InvSqrt 135,040 44,465
Int to FP Conv 5,752 1,210

TABLE 1V
CORE AREA ESTIMATES TO ACHIEVE 30 fps ON CONFERENCE. THESE
ESTIMATES INCLUDE THE MULTIPLE CORES, AS SHOWN IN FIGS. 3(a)
AND (b), BUT DO NOT INCLUDE THE CHIP-WIDE L2 CACHE, MEMORY
MANAGEMENT, OR OTHER CHIP-WIDE UNITS

2

Thrds CoreArea mm Core DieArea mm?
/Core 130 65 FPS Cores 130 65
nm nm nm  nm
16 473 1.35 071 43 203 58
32 6.68 1.90 142 22 147 42
64 10.60  2.99 246 15 138 39
128 18.42 5.17 346 9 166 47
TABLE V

PERFORMANCE COMPARISON FOR CONFERENCE AND SPONZA ASSUMING
A FIXED CHIP AREA OF 150 mm?. THIS FIXED CHIP AREA DOES NOT
INCLUDE THE L2 CACHE, MEMORY MANAGEMENT, AND OTHER
CHIP-WIDE UNITS. IT IS ASSUMED THAT THOSE UNITS WOULD
INCREASE THE CHIP AREA BY A FIXED AMOUNT

Threads # of Cores Conference Sponza
/Core 130 65 130 65 130 65
nm nm nm  nm nm  nm
16 32 111 227 793 17.7 617
32 22 79 319 1123 241 851
64 14 50 348 1236 240 854
128 8 29 282 1005 175 624

130-nm libraries, as they provide a good comparison to the
Saarland RPU and achieve roughly the same clock frequency
as the low-power 65-nm libraries.

Basic FUs, including register files and caches, were synthe-
sized, placed, and routed using Synopsys and Cadence tools
to generate estimated sizes (Table III). These estimates are
conservative, since hand-designed execution units will likely be
much smaller. We use these figures with simple extrapolation to
estimate the area required for a certain number of cores per chip
given replicated FUs and necessary memory blocks for thread
state. Since our area estimates do not include an L2 cache or
any off-chip I/O logic, our estimates in Tables IV and V are
limited to 150 mm? in order to allow room for the components
that are currently unaccounted for.

2) Performance: For aray tracer to be considered to achieve
real-time performance, it must have a frame rate of around
30 fps. The TRaX architecture is able to render the conference
scene at 31.9 fps with 22 cores on a single chip at 130 nm. At
65 nm with 79 cores on a single chip, performance jumps to
112.3 fps.
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The number of threads able to issue in any cycle is a valuable
measure of how well we are able to sustain parallel execution
by feeding threads enough data from the memory hierarchy
and offering ample issue availability for all execution units.
Fig. 7 shows, for a variable number of threads in a single core,
the average percentage of threads issued in each cycle. For 32
threads and below, we issue nearly 50% of all threads in every
cycle on average. For 64 threads and above, we see that the issue
rate drops slightly, ending up below 40% for the 128 threads
rendering the Sponza scene and below 30% for the Conference
scene.

Considering a 32-thread core with 50% of the threads issuing
each cycle, we have 16 instructions issued per cycle per core.
In the 130-nm process, we fit 16 to 22 cores on a chip. Even at
the low end, the number of instructions issued in each cycle
can reach up to 256. With a die that shrinks to 65 nm, we
can fit more than 64 cores on a chip, allowing the number of
instructions issued to increase to 1024 or more. Since we never
have to flush the pipeline due to incorrect branch prediction or
speculation, we potentially achieve an average instruction per
cycle (IPC) of more than 1024. Even recent GPUs with many
concurrent threads issue a theoretical maximum [PC of around
256 (128 threads issuing two FP operations per cycle).

Another indicator of sustained performance is the average
utilization of the shared FUs. The FP Inv unit shows utilization
at 70% to 75% for the test scenes. The FP Multiply unit has
50% utilization, and Integer Multiply has utilization in the 25%
range. While a detailed study of power consumption was not
performed in this paper, we expect the power consumption of
TRaX to be similar to that of commercial GPUs.

3) Cache Performance: We varied data cache size and issue
width to determine an appropriate configuration offering high
performance balanced with reasonable area and complexity. For
scenes with high complexity, a cache with at least 2048 lines
(16 B each) satisfied the data needs of all 32 threads executing
in parallel with hit rates in the 95% range. We attribute much
of this performance to low cache pollution because all stores go
around the cache. Although performance continued to increase
slightly with larger cache sizes, the extra area required to
implement the larger cache meant that the total silicon needed
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to achieve 30 fps actually increased beyond a 2-kB L1 data
cache size. To evaluate the number of read ports needed, we
simulated a large (64 kB) cache with between 1 and 32 read
ports. Three read ports provided sufficient parallelism for 32
threads. This is implemented as a four-bank directly mapped
cache.

The L2 cache was not modeled directly in these experiments.
Instead, a fixed latency of 20 cycles was used to conservatively
estimate the effect of the L2 cache. Ongoing simulations in-
clude detailed L2 and DRAM models, where it appears that
a 512-kB L2 cache shows good hit rates. Although those
simulations are not complete, initial indications are that our
estimate was, in fact, conservative. The ongoing simulations
are currently showing memory bandwidths between L1 cache
and the register file that ranges from 10-100 GB/s, depending
on the size of the scene. The L2-L1 bandwith ranges from
4-50 GB/s and DRAM-L2 from 250 Mb/s to 6 GB/s for
reads. These clearly cover a broad range, depending on the
size and complexity of the scene, and we are currently run-
ning additional simulations to better understand the memory
system.

The I-caches are modeled as 8-kB directly mapped caches,
but because the code size of our current applications is small
enough to fit in those caches, we assume they are fully warmed
and that all instruction references come from those caches. The
ongoing more detailed simulations do not make this assump-
tion, but because of the current code size, there are few impacts
of L1 I-cache on processing times.

4) Comparison: Comparing against the Saarland RPU [34],
[35], our frame rates are higher in the same technology, and our
flexibility is enhanced by allowing all parts of the ray-tracing
algorithm to be programmable instead of just the shading
computations. This allows our application to use (for example)
any acceleration structure and primitive encoding and allows
the hardware to be used for other applications that share the
thread-rich nature of ray tracing.

A ray-tracing application implemented on the cell processor
[29] shows moderate performance, as well as the limitations
of an architecture not specifically designed for ray tracing. In
particular, our hardware allows for many more threads execut-
ing in parallel and trades off strict limitations on the memory
hierarchy. The effect can be seen in the TRaX performance
at 500 MHz compared to the Cell performance at 3.2 GHz.
Table VI shows these comparisons.

B. Secondary Ray Performance

We call the initial rays that are cast from the eye point into the
scene to determine “visibility rays” (sometimes, these are called
“primary rays”) and all other rays that are recursively cast from
that first intersection point “secondary rays.” This is something
of a misnomer, however, because it is these secondary rays,
used to compute optical effects, that differentiate ray-traced
images from images computed using a z-buffer. The secondary
rays are not less important than the visibility rays. They are, in
fact, the essential rays that enable the highly realistic images
that are the hallmark of ray tracing. We believe that any
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TABLE VI
PERFORMANCE COMPARISON FOR CONFERENCE AGAINST CELL AND RPU. COMPARISON IN FRAMES PER SECOND AND MRPS. ALL
NUMBERS ARE FOR SHADING WITH SHADOWS. TRaX AND RPU NUMBERS ARE FOR 1024 x 768 IMAGES. CELL NUMBERS ARE FOR
1024 x 1024 IMAGES, AND THUS, THE CELL IS BEST COMPARED USING THE MRPS METRIC WHICH FACTORS OUT IMAGE SIZE

TRaX IBM Cell [29] RPU [35]
130nm 65nm 1 Cell 2 Cells DRPU4 DRPU8
fps 31.9 1123 20.0 37.7 27.0 81.2
mrps 50.2 177 419 79.1 424 128
process 130nm 65nm 90nm 90nm 130nm 90nm
area (mm?) ~ 200 ~ 200 ~ 200 =~ 440 ~ 200 ~ 190
Clock S500MHz  500MHz  32GHz  3.2GHz  266MHz  400MHz

specialized hardware for ray tracing must be evaluated for its
ability to deal with these all-important secondary rays.

A common approach to accelerating visibility rays is to use
“packets” of rays to amortize cost across sets of rays [23], [56],
[57]. However, secondary rays often lose the coherency that
makes packets effective and performance suffers on the image
as a whole. Thus, an architecture that accelerates individual ray
performance without relying on packets could have a distinct
advantage when many secondary rays are desired.

To study this effect, we use our path tracer application,
which we have designed so that we can control the degree
of incoherence in the secondary rays (see Section IV-B). We
do this by controlling the sampling cone angle for the cosine-
weighted Lambertian BRDF used to cast secondary rays.

We compare our path tracer to Manta, which is a well-studied
packet-based ray/path tracer [57]. Manta uses packets for all
levels of secondary rays, unlike some common ray tracers that
only use packets on primary rays. The packets in Manta shrink
in size as ray depth increases, since some of the rays in the
packet become uninteresting. We modified Manta’s path tracing
mode to sample secondary rays using the same cone angles as
in our TRaX path tracer, so that comparisons could be made.

Manta starts with a packet of 64 rays. At the primary level,
these rays will be fairly coherent as they come from a common
origin (the camera) and rays next to each other in pixel space
have a similar direction. Manta intersects all of the rays in
the packet with the scene BVH using the DynBVH algorithm
[22]. It then repartitions the ray packet in memory based on
which rays hit and which do not. DynBVH relies on coher-
ence with a frustum-based intersection algorithm and by using
Streaming SIMD Extension (SSE) instructions in groups of four
for ray—triangle intersection tests. If rays in the packet remain
coherent, then these packets will stay together through the BVH
traversal and take advantage of SSE instructions and frustum-
culling operations. However, as rays in the packet become
incoherent, they will very quickly break apart, and almost every
ray will be traversed independently.

To test how our path tracer performs relative to the level
of coherence of secondary rays, we ran many simulations,
incrementally increasing the angle of our sampling cone and
measuring rays per second and speedup (slowdown) as the
angle was increased and secondary rays become less coherent.
For all of our tests, we used a ray depth of three (one primary
ray and two secondary rays). We believe that three rays taken
randomly on a hemisphere are sufficient for complete inco-
herence and will allow secondary rays to bounce to any part
of the scene data. This will cause successive rays to have a

widely ranging origin and direction, and packets will become
very incoherent.

With a cone angle close to 0°, secondary rays will be limited
to bouncing close to the normal, which will force rays to a
limited area of the scene. In a packet-based system using a
narrow cone angle, successive samples will have a much higher
probability of hitting the same BVH nodes as other samples in
the packet, allowing for multiple rays to be traced at the same
time with SIMD instructions. Increasing the angle of the cone
will decrease this probability, allowing for fewer, if any, SIMD
advantages. With a cone angle of 180°, a packet of secondary
rays will be completely incoherent, and the probability of
multiple rays hitting the same primitives is very slim. We used
the same cone angle sampling scheme in Manta and tested
TRaX versus Manta on common benchmark scenes to show
the degrees of slowdown that each path tracer suffers as rays
become incoherent.

As explained before, we used a fixed ray depth of three. We
varied the size of the image and the number of samples per
pixel and gathered data for the number of rays per second for
each test for both path tracers. For TRaX, we also recorded L1
cache hit rates and thread-issue rates within the single core that
was simulated. The images themselves can be seen in Fig. 4,
with data about the images shown in Table 1.

Our primary interest is the speed for each path tracer relative
to itself as the cone angle is modified. The results are shown
in Table VII. We show that, as the secondary rays become
incoherent, the TRaX architecture slows to between 97% and
99% of the speed with a narrow cone angle. On the other hand,
the Manta path tracer on the same scene with the same cone
angles slows to between 47% to 53% of its speed on the narrow
angle cone. We believe that this validates our approach of
accelerating single-ray performance without relying on packets
and SIMD instructions.

In addition to showing that the TRaX architecture maintains
performance better than a packet-based path tracer in the face
of incoherent secondary rays, we need to verify that this is
not simply due to TRaX being slow overall. Thus, we also
measure millions of rays per second (MRPS) in each of the
path tracers. The Manta measurements are made by running the
code on one core of an Intel Core2 Duo machine running at
2.0 GHz. The TRaX numbers are from our cycle-accurate
simulator assuming a 500-MHz speed and using just a single
core with 32 TPs. We expect these numbers to scale very well,
as we tile multiple cores on a single die. As mentioned in
Section III, chips with between 22 to 78 cores per die would
not be unreasonable.
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TABLE VII
RESULTS ARE REPORTED FOR THE CONFERENCE AND SPONZA SCENES AT TWO DIFFERENT RESOLUTIONS WITH A DIFFERENT NUMBER OF RAYS PER
PIXEL. PATH TRACED IMAGES USE A FIXED RAY DEPTH OF THREE. TRaX RESULTS ARE FOR A SINGLE CORE WITH 32 TPs RUNNING AT A SIMULATED
500 MHz. WE EXPECT THESE NUMBERS TO SCALE WELL AS THE NUMBER OF TRaX CORES IS INCREASED. MANTA NUMBERS ARE MEASURED BY
RUNNING ON A SINGLE CORE OF AN INTEL CORE2 DUO AT 2.0 GHz. SPEED RESULTS ARE NORMALIZED TO PATH TRACING WITH A 10° CONE

Conference: 256x256 with 4 samples per pixel

ray casting only 10 degrees 60 degrees 120 degrees 180 degrees
Manta MRPS 1.61 0.8625 0.5394 0.4487 0.4096
Manta speed 1.87 1 0.63 0.52 0.47
TRaX MRPS 1.37 1.41 1.43 1.43 1.40
TRaX speed 97 1 1.01 1.01 0.99
Cache hit % 88.9 85.1 83.9 83.5 83.2
Thread issue %  52.4 52.4 52.5 52.5 524

Sponza: 128128 with 10 samples per pixel

ray casting only 10 degrees 60 degrees 120 degrees 180 degrees
Manta MRPS 1.391 0.7032 0.4406 0.3829 0.3712
Manta speed 1.98 1 0.63 0.54 0.53
TRaX MRPS 0.98 1.01 0.98 0.97 0.98
TRaX speed 0.97 1 0.97 0.96 0.97
Cache hit % 81.5 77.4 76.3 76.0 76.0
Thread issue %  50.6 50.9 50.9 50.7 50.9

In order to show why TRaX slows down as it does, we also
include the cache hit rate from our simulator and the average
percentage of total threads issuing per cycle in Table VII. As
the cone angle increases, rays are allowed to bounce with a
wider area of possible directions, thus hitting a larger range
of the scene data. With a smaller cone angle, subsequent rays
are likely to hit the same limited number of triangles, allowing
them to stay cached. As more threads are required to stall due
to cache misses, we see fewer threads issuing per cycle. This is
a smaller thread-issue percentage than we saw in previous work
[7], which indicates that smaller cores (cores with fewer TPs)
may be interesting for path tracing.

Because of the time required to run a cycle-accurate simu-
lation, the results from this paper are restricted to relatively
low resolution and ray depth. However, if we consider the
effect of dynamic ray depth computations on an average scene,
rays often lose enough energy to be cut off on or before three
bounces, particularly if Russian roulette is employed. If deeper
ray depths are required, this would likely have the effect of
improving the TRaX advantage over a packet-based path tracer
like Manta, as the percentage of incoherent rays would increase
(the primary rays would be a smaller percentage of the total
rays cast).

VII. CONCLUSION

We have shown that a simple, yet powerful, multicore multi-
threaded architecture can perform real-time ray tracing running
at modest clock speeds on achievable technology. By exploit-
ing the coherence among primary rays with similar direction
vectors, the cache hit rate is very high, even for small caches.
There is still potential to gain even more benefit from primary
ray coherence by assigning nearby threads regions of the screen
according to a space filling curve.

With the help of our cycle-accurate simulator, we expect to
improve the performance of our system along many dimen-
sions. In particular, there may be potential for greater perfor-
mance by using a streaming memory model for an intelligently

selected subset of memory accesses in parallel with the existing
cache memory. Ray/BVH intersection, in particular, will likely
benefit dramatically from such a memory system [58]. We will
also improve the memory system in the simulator to more
accurately simulate L2 cache performance.

It is, of course, not completely clear yet that our non-SIMD
approach is superior to an SIMD approach. The main overhead
of a non-SIMD core is the replication of the I-cache and decode
logic. We are currently exploring the sharing of a multibanked
I-cache among a number of TPs to amortize this overhead.
However, the size of the I-caches is small compared to the
D-caches and the FUs; thus, we believe that the general over-
head of including more I-caches for a non-SIMD approach will
be fairly small. More importantly, the performance advantage
on noncoherent secondary rays seems to be large, and TRaX
seems to scale well for these very important rays.

In order to explore whether our TRaX architecture performs
well with incoherent secondary rays, we have implemented
a path tracer with an artificially narrowed Lambertian BRDF
benchmark as a simple way to quantify ray coherence. We
have found that TRaX has only a minor slowdown of 97% to
99% of top speed on our test scenes when the secondary rays
become highly incoherent. Manta slowed down to 47% to 53%
of top speed on the same scenes with the same mechanism
for controlling coherency. We attribute the difference to the
overhead of dealing with small packets and the breakdown of
the SIMD operation as the packets become highly incoherent.

We are in the process of improving our ray-tracing ap-
plications to drive architectural exploration further. The goal
is to allow for Cook style ray tracing [59] with support for
multisampling. We will also add support for image-based tex-
tures as a comparison against procedural textures and explore
hardware support for gradient noise used in procedural textures.
Some researchers anticipate that a strong niche for real-time
ray tracing will involve shallow ray trees (i.e., few reflections)
and mostly procedural textures [50]. Procedural textures using,
for example, Perlin noise techniques [47], [48] increase FP
operations by about 50% in the worst case but have a negligible
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impact on memory bandwidth. This can have a positive impact
on performance by trading computation for memory bandwidth.

We have described an architecture which achieves physically
realistic real-time ray tracing with realistic size constraints.
Our evaluation has shown that TRaX performs competitively
or outperforms other ray-tracing architectures and does so with
greater flexibility at the programming level.
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