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ABSTRACT

Ray tracing is becoming more widely adopted in o✏ine rendering systems due to its

natural support for high quality lighting. Since quality is also a concern in most real time

systems, we believe ray tracing would be a welcome change in the real time world, but is

avoided due to insu�cient performance. Since power consumption is one of the primary

factors limiting the increase of processor performance, it must be addressed as a foremost

concern in any future ray tracing system designs. This will require cooperating advances

in both algorithms and architecture. In this dissertation I study ray tracing system designs

from a data movement perspective, targeting the various memory resources that are the

primary consumer of power on a modern processor. The result is high performance, low

energy ray tracing architectures.
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CHAPTER 1

INTRODUCTION

Rendering computer graphics is a computationally intensive and power consumptive

operation. Since a very significant portion of our interaction with computers is a visual

process, computer designers have heavily researched more e�cient ways to process graphics.

For application domains such as graphics that perform regular and specialized computations,

and are frequently and continuously active, customized processing units can save tremen-

dous energy and improve performance greatly [24, 58, 39]. As such, almost all consumer

computers built today, including phones, tablets, laptops, and workstations, integrate some

form of graphics processing hardware.

Existing graphics processing units (GPUs) are designed to accelerate Z-bu↵er raster

style graphics [17], a rendering technique used in almost all 3D video games and real-time

applications today. Raster graphics takes advantage of the specialized parallel processing

power of modern graphics hardware to deliver real-time frame rates for increasingly complex

3D environments. Ray-tracing [103] is an alternative rendering algorithm that more natu-

rally supports highly realistic lighting simulation, and is becoming the preferred technique

for generating high quality o✏ine visual e↵ects and cinematics [29]. However, current

ray-tracing systems cannot deliver high quality rendering at the frame rates required by

interactive or real-time applications such as video games [10]. Reaching the level of cinema-

quality rendering in real-time will require at least an order of magnitude improvement

in ray processing throughput. We believe this will require cooperating advances in both

algorithmic and hardware support.

Power is becoming a primary concern of chip manufacturers, as heat dissipation limits

the number of active transistors on high-performance chips, battery life limits usability in

mobile devices, and power costs to run and cool machines is one of the major expenses in a

data center [23, 87, 98]. Much of the energy consumed by a typical modern architecture is

spent in the various memory systems, both on- and o↵-chip, to move data to and from the

computational units. Fetching an operand from main memory can be both slower and three
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orders of magnitude more energy expensive than performing a floating point arithmetic

operation [23]. In a modern midrange server system, the o↵-chip memory system can

consume as much power as the chip itself [11]. Even on-chip, most of the energy for a

ray-tracing workload running on the TRaX ray-tracing architecture [93] is spent in memory

systems. Figure 1.1 shows that all memory systems combined consume almost 40⇥ more

energy than the computational execution units (XUs).

1.1 Thesis
Due to its natural support for high quality rendering, we believe ray-tracing will be the

preferred 3D rendering technique if performance and e�ciency can be drastically improved.

Energy is a primary concern in all forms of computing, from data centers to mobile devices.

Given that a large percentage of the energy consumed during ray-tracing is related to data

movement to and from memory, we study ways to dramatically reduce energy consumption

in the ray-tracing algorithm by targeting data movement at all levels of the memory

hierarchy: data and instruction caches, register files, and DRAM. We arrive at fundamental

design changes not only to the machine architecture, but to the ray-tracing algorithm that

it executes. These designs greatly improve the outlook of widely adopted ray-tracing.
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CHAPTER 2

BACKGROUND

Interactive computer graphics today is dominated by extensions to Catmull’s original

Z-bu↵er rasterization algorithm [17]. The basic operation of this type of rendering is to

project 3D primitives (usually triangles) on to the 2D screen. This 2D representation of the

scene is then rasterized, a process that determines which pixels an object covers (Figure 2.1,

left). Pixels are then assigned a color in a process called shading, based on which primitive

is visible and the lighting information in the scene. This process requires maintaining the

distance from the screen to the closest known visible primitive in a Z-bu↵er, sometimes

called a depth bu↵er, in order to prevent occluded objects from being visible.

Highly realistic rendering requires that the shading of an object account for all light

sources interacting with it, including light bouncing o↵ or transmitting through other objects

in the scene. These so-called global illumination e↵ects include shadows, transparency,

reflections, refractions, and indirect illumination. With a rasterization system all primitives

in the scene are processed independently, which presents challenges for global lighting

calculations since it is di�cult to determine information about other (global) geometry

while shading one pixel fragment. Techniques to approximate global lighting exist, but

Figure 2.1: Z-Bu↵er Rasterization vs. Ray Tracing.
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can have shortcomings in certain situations, and combining them in to a full system is a

daunting task.

Ray-tracing is an alternative rendering algorithm in which the basic operation used to

determine visibility and lighting is to simulate a path of light. For each pixel, a ray is

generated by the camera and sent in to the scene (Figure 2.1, right). The nearest geometry

primitive intersected by that ray is found to determine which object is visible through

that pixel. The color of the pixel (shading) is then computed by creating new rays, either

bouncing o↵ the object (reflection and indirect illumination), transmitting through the

object (transparency), or emitted from the light source (direct lighting and shadows). The

direction and contribution of these so-called secondary rays is determined by the physical

properties of light and materials. Secondary rays are processed through the scene in the

same way as camera rays to determine the closest object hit, and the shading process is

continued recursively. This process directly simulates the transport of light throughout the

virtual scene and naturally produces photo-realistic images.

The process of determining which closest geometry primitive a ray intersects is referred

to as traversal and intersection. In order to avoid the intractable problem of every ray

checking for intersection with every primitive, an acceleration structure is built around the

geometry that allows for quickly culling out large portions of the scene and finding a much

smaller set of geometry the ray is likely to intersect. These structures are typically some

form of hierarchical tree in which each child subtree contains a smaller, more localized

portion of the scene.

Due to the independent nature of triangles in Z-bu↵er rendering, it is trivial to parallelize

the process on many triangles simultaneously. Existing GPUs stream all geometry primi-

tives through the rasterization pipeline using wide parallelism techniques to achieve truly

remarkable performance. Ray-tracing is also trivial to parallelize, but in a di↵erent way:

individual rays are independent and can be processed simultaneously. Z-bu↵er rendering

is generally much faster than ray-tracing for producing a passable image, partly due to

the development of custom hardware support over multiple decades. On the other hand

ray-tracing can provide photo-realistic images much more naturally, and has recently become

feasible as a real-time rendering method on existing and proposed hardware.

2.1 Graphics Hardware
The basic design goal of graphics hardware is to provide massive parallel processing

power. To achieve this, GPUs do away with features of a small set of complex cores in favor

of a vastly greater number of cores, but of a much simpler architecture. These cores often
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run at a slower clock rate than general purpose cores, but make up for it in the parallelism

enabled by their larger numbers. Since GPUs target a specific application domain (graph-

ics), many general purpose features are not needed, although recent generations of GPUs

are beginning to support more general purpose programmability, particularly for massively

parallel applications.

2.1.1 Parallel Processing

Most processing workloads exhibit some form of parallelism, i.e., there are independent

portions of work that can be performed simultaneously since they don’t a↵ect each other.

There are many forms of parallelism, but we will focus on two of them: data-level parallelism

and task-level parallelism. Z-bu↵er rendering exhibits data parallelism because it performs

the exact same computation on many di↵erent pieces of data (the primitives). Ray-tracing

exhibits task parallelism since traversing a ray through the acceleration structure can require

a di↵erent set of computations per ray (task), but rays can be processed simultaneously.

There are multiple programming models and architectural designs to support these types

of parallelism. Algorithms can be carefully controlled or modified to better match a

certain parallelism model, to varying degrees of success, but there are important benefits

and drawbacks when considering processing and programming models. Some of the basic

architectural models for supporting parallelism include:

Single Instruction, Multiple Data (SIMD)

This is the basic architectural model that supports data-level parallelism. A SIMD

processor fetches and executes one atom of work (instruction) and performs that

operation on more than one set of data operands in parallel. From a hardware

perspective, SIMD is perhaps the simplest way to achieve parallelism since only the

execution units and register file must be replicated. The cost of fetching and decoding

an instruction can be amortized over the width of the data. SIMD processors have

varying data width, typically ranging from 4 to 32. An N-wide SIMD processor

can potentially improve performance by a factor of N, but requires high data-level

parallelism.

Single Instruction, Multiple Thread (SIMT)

A term introduced by NVIDIA, SIMT [55] extends the SIMD execution model to

include the construct of multiple threads. A SIMT processor manages the state of

multiple execution threads (or tasks) simultaneously, and can select which thread(s)
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to execute on any given cycle. Usually the number of thread states is far greater than

can be executed on a single cycle, so they are routinely context switched, or swapped

in and out of activity. This gives the thread scheduler freedom to chose from many

threads, improving the odds of finding one that is not stalled on any given cycle.

Although the SIMT programming model presents all threads as independent, they

are collected into groups called warps, which must execute in a SIMD fashion, i.e., all

execute the same instruction simultaneously. If one of the threads branches di↵erently

than others in its warp, its execution lane is masked o↵ while other threads execute

their code path. Eventually the warp must rejoin the threads by executing the code

path of the previously masked thread while masking the previously active threads.

In order to support the programming model of independent threads, the hardware

automatically performs this masking, but parallelism is lost and performance su↵ers

if threads truly are independent and execute individual code paths.

Multiple Instruction, Multiple Data (MIMD)

This is the basic architectural model that supports task parallelism. MIMD processors

provide full support for multiple individual threads. This requires replicating all

necessary components for running a process, including instruction fetch and decoder

hardware. The processor can simultaneously run separate subtasks of a program, or

even completely separate programs. MIMD can easily support data-parallel workloads

as well, but is less e�cient than SIMD from an energy perspective, since there is no

work amortization. MIMD parallelism is resource expensive, but supports a broad

range of applications.

Single Program, Multiple Data (SPMD)

SPMD is a subclass of MIMD, in which the parallel threads must be running the

same program, but threads are allowed to diverge freely within that program. This

enables various simplifications over full MIMD support, such as relaxed operating

system requirements and potentially reduced instruction cache requirements. A ray

tracer fits this category of parallelism quite well, since all threads are running the

same program (tracing rays), but rays are independent tasks.

2.1.2 Commodity GPUs and CPUs

Almost all desktop GPUs on the market today are designed for Z-bu↵er rasterization.

In part, this means they employ some form of wide SIMD/SIMT processing [7, 55] to take
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advantage of the data-parallel nature of Z-bu↵er graphics. To give one example, the GeForce

GTX 980 high-end NVIDIA GPU ships with 64 streaming multiprocessors (SM), each with

a 32-wide SIMD execution unit, for a total of 2048 CUDA cores [70], and a tremendous 4.6

teraflops of peak processing throughput.

Desktop CPUs are primarily multi-core MIMD designs in order to support a wide range

of applications and multiple unrelated processes simultaneously. Individual CPU threads are

typically significantly faster than GPU threads, but overall provide less parallel processing

power. AMD eventually introduced SIMD extensions to the popular x86 instruction set

called 3DNow! [6], which adds various 4-wide SIMD instructions. Similarly, Intel introduced

its own streaming SIMD extensions (SSE) [42], and later the improved 8-wide AVX instruc-

tions [43]. This hybrid MIMD/SIMD approach results in multiple independent threads, each

capable of vector data instruction issue. Intel’s Xeon Phi accelerator takes this approach

to the extreme, with up to 61 MIMD cores, each with a 16-wide SIMD unit, presenting an

intriguing middle ground for a ray-tracing platform.

Current ray-tracing systems are still at least an order of magnitude short in performance

for rendering modest scenes at cinema quality, resolution, and frame rate. Table 2.1

estimates the rays/second performance required for real-time movie-quality ray-tracing

based on movie test renderings [28]. Existing consumer ray-tracing systems can achieve up

to a few hundred million rays per second [5, 102].

2.1.2.1 Ray Tracing on CPUs

Researchers have been developing ray-tracing performance optimizations on CPUs for

many years. Historically, the CPU made for a better target than GPUs, partly due to

the lack of programmability of early commercial GPU hardware. In the past, the intensive

computational power required for ray-tracing was far more than a single CPU could deliver,

but interactivity was possible through parallelizing the workload on a large shared memory

cluster with many CPUs [74]. Around the same time, SSE was introduced, potentially

quadrupling the performance of individual CPU cores, but also requiring carefully mapping

the ray-tracing algorithm to use vector data instructions.

Table 2.1: Estimated performance requirements for movie-quality ray traced images at
30Hz.

display type pixels/frame rays/pixel million rays/frame million rays/sec needed

HD resolution 1920x1080 50 - 100 104 - 208 3,100-6,200
30” Cinema display 2560x1600 50 - 100 205-410 6,100-12,300
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Wald et al. collect rays into small groups called packets [101]. These packets of rays

have a common origin, and hopefully similar direction, making them likely to take the same

path through an acceleration structure, and intersect the same geometry. This coherence

among rays in a packet exposes SIMD parallelism opportunities in the form of performing

traversal or intersection operations on multiple (four in the case of SSE) rays simultaneously.

Processing rays in coherent groups also has the e↵ect of amortizing the cost of fetching scene

data across the width of the packet, resulting in reduced memory tra�c.

One of the biggest challenges of a packetized ray tracer is finding groups of rays that

are coherent. Early systems simply used groups of primary rays through nearby pixels,

and groups of point-light shadow rays from nearby shading points. One of the most

important characteristics of ray-tracing is its ability to compute global illumination e↵ects,

which usually require intentionally incoherent (randomized) rays, making it di�cult to form

coherent packets for any groups of rays other than primary camera rays. When incoherent

rays within a packet require di↵erent traversal paths, the packet must be broken apart

into fewer and fewer active rays, losing the intended benefits altogether. Boulos et al. [12]

explore improved packet assembly algorithms, finding coherence among incoherent global

illumination rays. Boulos et al. [13] further improve upon this by dynamically restructuring

packets on the fly, better handling extremely incoherent rays, such as those generated by

path tracing [47].

Despite all e↵orts to maintain coherent ray packets, it is sometimes simply not possible.

An alternative to processing multiple rays simultaneously is to process a single ray through

multiple traversal or intersection steps simultaneously. Since SIMD units are typically at

least 4-wide on CPUs, this favors wide-branching trees in the acceleration structure [27, 99].

A combination of ray packets and wide trees has proven to be quite advantageous, enabling

high SIMD utilization in situations both with and without high ray coherence [8]. Utilizing

these techniques, Intel’s Embree engine [102] can achieve an impressive hundreds of millions

of rays per second when rendering scenes with complex geometry and shading.

2.1.2.2 Ray Tracing on GPUs

As GPUs became more programmable, their parallel compute power made them an

obvious target for ray-tracing. Although still limited in programmability at the time, Purcell

et al. developed the first full GPU ray tracer using the fragment shader as a programmable

portion of the existing graphics pipeline [79]. Their system achieved performance (rays/sec)

similar to or higher than cutting edge CPU implementations at the time [100]. GPUs would

become more supportive of programmable workloads with the advent of CUDA [71] and
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OpenCL [96], and researchers quickly jumped on the new capabilities with packetized traver-

sal of sophisticated acceleration structures, enabling the rendering of massive models [34].

Aila et al. [4] note that most GPU ray-tracing systems were dramatically underutilizing

the available compute resources, and carefully investigate ray traversal as it maps to GPU

hardware. They indicate that ray packets do not perform well on extremely wide (32 in their

case) SIMD architectures, and instead provide thoroughly investigated and highly optimized

per-ray traversal kernels. With slight updates to take advantage of newer architectures,

their kernels can process hundreds of millions of di↵use rays per second [5]. Still, the SIMD

utilization (percentage of active compute units) is usually less than half [4], highlighting the

di�culties caused by the divergent code paths among incoherent rays.

NVIDIA’s OptiX [75] is a ray-tracing engine and API that provides users the tools to

assemble a full, custom ray tracer without worrying about the tricky details of GPU code

optimization. OptiX provides high performance kernels including acceleration structure

generation and traversal, which can be combined with user-defined kernels for, e.g. shading,

by an optimizing compiler. Although flexible and programmable, OptiX is able to achieve

performance close to the highly tuned ray tracers in [4].

2.1.3 Ray Tracing Processors

Despite the increasing programmability of today’s GPUs, many argue that custom ray-

tracing architectural features are needed to achieve widespread adoption, whether in the

form of augmentations to existing GPUs or fully custom designs.

One of the early e↵orts to design a fully custom ray-tracing processor was SaarCOR [84,

85], later followed by Ray Processing Unit (RPU) [106, 105]. SaarCOR and RPU are

custom hard-coded ray-tracing processors, except RPU has a programmable shader. Both

are implemented and demonstrated on an FPGA and require that a kd-tree be used. The

programmable portion of the RPU is known as the Shading Processor (SP), and consists

of four 4-way vector cores running in SIMD mode with 32 hardware threads supported on

each of the cores. Three caches are used for shader data, kd-tree data, and geometry data.

Cache coherence is quite good for primary rays and adequate for secondary rays. With an

appropriately described scene (using kd-trees and triangle data encoded with unit-triangle

transformations) the RPU can achieve impressive frame rates for the time, especially when

extrapolated to a potential CMOS ASIC implementation [105]. The fixed-function nature

of SaarCOR and RPU provides very high performance at a low energy cost, but limits their

usability.
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On the opposite end of the spectrum, the Copernicus approach [31] attempts to leverage

existing general purpose x86 cores in a many-core organization with special cache and mem-

ory interfaces, rather than developing a specialized core specifically for ray-tracing. As a

result, the required hardware may be over-provisioned, since individual cores are not specific

to ray-tracing, but using existing core blocks improves flexibility and saves tremendous

design, validation, and fabrication costs. Achieving real-time rendering performance on

Copernicus requires an envisioned tenfold improvement in software optimizations.

The Mobile Ray Tracing Processor (MRTP) [49] recognizes the multiphase nature of

ray-tracing, and provides reconfigurability of execution resources to operate as wide SIMT

scalar threads for portions of the algorithm with nondivergent code paths, or as a narrower

SIMT thread width, but with each thread operating on vector data for portions of the

algorithm with divergent code paths. Each MRTP reconfigurable stream multiprocessor

(RSMP) can operate as 12-wide SIMT scalar threads, or 4-wide SIMT vector threads.

Running in the appropriate configuration for each phase of the algorithm helps reduce the

underutilization that SIMT systems can su↵er due to branch divergence. This improves

performance, and as a side-e↵ect, reduces energy consumption due to decreased leakage

current from inactive execution units. This reconfigurability is similar in spirit to some of

our proposed techniques (Section 7.1.2).

Nah et al. present the Traversal and Intersection Engine (T&I) [65], a fully custom

ray tracing processor with fixed-function hardware for an optimized traversal order and

tree layout, as well as intersection. This is combined with programmable shader support,

similar to RPU [106]. T&I also employs a novel ray accumulation unit which bu↵ers rays

that incur cache misses, helping to hide high latency memory accesses. T&I was later

improved to be used as the GPU portion of a hybrid CPU/GPU system [64]. The primitive

intersection procedure and acceleration structure builder is modified so that every primitive

is enclosed with an axis-aligned bounding-box (AABB), and the existing AABB intersection

unit required for tree traversal is reused to further cull primitive intersections. Essentially,

this has the e↵ect of creating shallower trees that are faster to construct.

2.1.4 Ray Streaming Systems

Data access patterns can have a large impact on performance (see Chapters 3 and 4).

In an e↵ort to make the ray-tracing memory access patterns more e�cient, recent work has

proposed significantly modifying the ray-tracing algorithm. Navrátil et al. [67] and Aila et

al.[2] identify portions of the scene data called treelets, which can be grouped together and

fill roughly the capacity of the cache. Rays are then dynamically scheduled for processing
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based on which group they are in, allowing rays that access similar regions of data to share

the costs associated with accessing that data. This drastically improves cache hit rates,

thus reducing the very costly o↵-chip memory tra�c. The tradeo↵ is that rays must be

bu↵ered for delayed processing, requiring saved ray state, and complicating the algorithm.

We use a similar technique in [50] (Section 3.2).

Gribble and Ramani [33, 82] group rays together by applying a series of filters to a large

set of rays, placing them into categories based on certain properties, e.g., ray type (shadow

or primary), the material hit, whether the ray is active or not, which nodes a ray has

entered, etc. Although their goal was to improve SIMD e�ciency by finding large groups

of rays performing the same computation, it is likely the technique will also improve data

access coherence. Furthermore, by using a flexible multiplexer-driven interconnect, data can

be e�ciently streamed between execution resources, avoiding the register file when possible

and reducing power consumption. We use similar techniques in Section 7.1.2.

Keely [48] reexamines acceleration structure layout, and significantly reduces the numer-

ical precision required for traversal computations. Lower-precision execution units can be

much smaller and more energy e�cient, allowing for many of them to be placed in a small

die area. Keely builds on recent treelet techniques, adding reduced-precision fixed-function

traversal units to an existing high-end GPU, resulting in incredibly high (reduced-precision)

operations per second, kept fed with data by an e�cient data streaming model. The reported

performance is very impressive, at greater than one billion rays per second. Reduced

precision techniques like those used in [48] are independent of treelet/streaming techniques,

and could be applied to to the work proposed in Chapter 3.

2.2 Threaded Ray Execution (TRaX)
TRaX is a custom ray-tracing architecture designed from the ground up [52, 93, 94]. The

basic design philosophy behind TRaX aims to tile as many thread processors as possible

on to the chip for massive parallel processing of independent rays. Thread processors are

kept very simple, their small size permitting many of them in a given die area. To achieve

this, each thread only has simple thread state, integer, issue, and control logic. Large or

expensive resources are not replicated for each thread. These larger units—floating point

arithmetic, instruction caches, and data caches—are shared by multiple thread processors,

relying on the assumption that not all threads will require a shared resource at the same

time. This assumption is supported by a SPMD parallelism model, in which threads can
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diverge independently through execution of the code, naturally requiring di↵erent resources

at di↵erent times.

Figure 2.2 shows an example block diagram of a TRaX processor. The basic architecture

is a collection of simple, in-order, single-issue integer thread processors (TPs) configured

with general purpose registers and a small local memory. The generic TRaX thread

multiprocessor (TM) aggregates a number of TPs which share more expensive resources.

The specifics of the size, number, and configuration of the processor resources are variable.

Simtrax [38] is a cycle-accurate many-core GPU simulator supported by a powerful

compiler toolchain and API [92]. Simtrax allows for the customization of nearly all

components of the processor, including cache and memory capacities and banking, cache

policies, execution unit mix and connectivity, and even the addition of custom units or

memories. Simtrax is open source, so the overall architecture, ISA, and API are all adaptable

as needed. We investigate a broad design space of configurations through simulation and

attempt to find optimal designs in terms of performance per die area.

2.2.1 Architectural Exploration Procedure

The main architectural challenge in the design of a ray-tracing processor is to provide

support for the many independent rays that must be computed for each frame. Our

approach is to optimize single-ray SPMD performance. This approach can ease application

TMs TMs

L2TMs TMs

L2TMs TMs

L2TMs TMs

L2

L1

D$

XUs

I$ I$TPs TPs

Figure 2.2: Baseline TRaX architecture. Left: an example configuration of a single
Thread Multiprocessor (TM) with 32 lightweight Thread Processors (TPs) which share
caches (instruction I$, and data D$) and execution units (XUs). Right: potential TRaX
chip organization with multiple TMs sharing L2 caches [93].



13

development by reducing the need to orchestrate coherent ray bundles and execution kernels

compared to a SIMD/SIMT ray tracer. To evaluate our design choices, we compare our

architecture to the best known SIMT GPU ray tracer at the time [4].

We analyze our architectural options using four standard ray-tracing benchmark scenes,

shown in Figure 2.3, that provide a representative range of performance characteristics,

and were also reported in [4]. Our design space exploration is based on 128x128 resolution

images with one primary ray and one shadow ray per pixel. This choice reduces simulation

complexity to permit analysis of an increased number of architectural options. The low

resolution will have the e↵ect of reducing primary ray coherence, but with the beneficial side-

e↵ect of steering our exploration towards a configuration that is tailored to the important

incoherent rays. However, our final results are based on the same images, the same image

sizes, the same mixture of rays, and the same shading computations as reported in [4]. Our

overall figure of merit is performance per area, reported as millions of rays per second per

square millimeter (MRPS/mm

2), and is compared with other designs for which area is

either known or estimable.

Our overall architecture is similar to Copernicus [32] in that it consists of a MIMD

collection of processors. However, it actually has more in common with the GT200 [69]

GPU architecture in the sense that it consists of a number of small, optimized, in-order

cores collected into a processing cluster that shares resources. Those processing clusters

(Streaming Multiprocessors (SMs) for GT200, and Thread Multiprocessors (TMs) in our

case) are then tiled on the chip with appropriate connections to chip-wide resources. The

main di↵erence is that our individual threads can diverge in control flow without losing

parallelism, rather than being tied together in wide SIMT “warps,” requiring divergent

threads to be masked and e↵ectively stall execution.

Conference
282k triangles

(a)

Sponza
76k triangles

(b)

Sibenik
80k triangles

(c)

Fairy
174k triangles

(d)

Figure 2.3: Test scenes used to evaluate performance for the baseline TRaX architecture.
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The lack of synchrony between ray threads reduces resource sharing conflicts between

the cores and reduces the area and complexity of each core. With a shared multibanked

Icache, the cores quickly reach a point where they are each accessing a di↵erent bank, and

shared execution unit conflicts can be similarly reduced.

In order to hide the high latency of memory operations in graphics workloads, GPUs

maintain many threads that can potentially issue an instruction while another thread is

stalled. This approach involves sharing a number of thread states per core, only one of which

can attempt to issue on each cycle. Given that the largest component of TRaX’s individual

thread processor is its register file, adding the necessary resources for an extra thread state

is tantamount to adding a full thread processor. Thus, in order to sustain high instruction

issue rate, we add more full thread processors as opposed to context switching between

thread states. While GPUs can dynamically schedule more or fewer threads based on the

number of registers the program requires [56], the TRaX approach is to allocate a minimal

fixed set of registers per thread. The result is a di↵erent ratio of registers to execution

resources for the cores in our TMs compared to a typical GPU. We rely on asynchrony to

sustain a high issue rate to our heavily shared resources, which enables simpler cores with

reduced area over a fully provisioned processor.

Our exploration procedure first defines an unrealistic, exhaustively-provisioned SPMD

multiprocessor as a starting point. This serves as an upper bound on raw performance, but

requires an unreasonably large chip area. We then explore various multibanked Dcaches and

shared Icaches using Cacti v6.5 [63] to provide area and latency estimates for the various

configurations. Next, we consider sharing large execution units which are not heavily used,

in order to reduce area with a minimal performance impact. Finally we explore a chip-wide

configuration that uses shared L2 caches for a number of TMs.

To evaluate this architectural exploration, we use a simple test application written

in C++, compiled with our custom LLVM [19] backend. This application can be run

as a simple ray tracer with ambient occlusion, or as a path tracer which enables more

detailed global illumination e↵ects using Monte-Carlo sampled Lambertian shading [89]

which generates more incoherent rays. Our ray tracer supports fully programmable shading

and texturing and uses a bounding volume hierarchy acceleration structure. In this work

we use the same shading techniques as in [4], which do not include texturing.

2.2.1.1 Thread Multiprocessor (TM) Design

Our baseline TM configuration is designed to provide an upper bound on the thread

issue rate. Because we have more available details of their implementation, our primary
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comparison is against the NVIDIA GTX285 [4] of the GT200 architecture family. The

GT200 architecture operates on 32-thread SIMT “warps.”

The “SIMD e�ciency” metric is defined in [4] to be the percentage of SIMD threads

that perform computations. Note that some of these threads perform speculative branch

decisions which may perform useless work, but this work is counted as e�cient. In our

architecture the equivalent metric is thread issue rate. This is the average number of

independent cores that can issue an instruction on each cycle. These instructions always

perform useful work. The goal is to have thread issue rates as high or higher than the SIMD

e�ciency reported on highly optimized SIMD code. This implies an equal or greater level

of parallelism, but with more flexibility.

We start with 32 cores in a TM to be comparable to the 32-thread warp in a GT200 SM.

Each core processor has 128 registers, issues in order, and employs no branch prediction.

To discover the maximum possible performance achievable, each initial core will contain

all of the resources that it can possibly utilize. In this configuration, the data caches are

overly large (enough capacity to entirely fit the dataset for two of our test scenes, and still

unrealistically large for the others), with one bank per core. There is one execution unit

(XU) of each type available for every core. Our ray-tracing code footprint is relatively

small, which is typical for ray tracers (ignoring custom artistic material shaders) [30, 89]

and is similar in size to the ray tracer evaluated in [4]. Hence the Icache configurations

are relatively small and therefore fast enough to service two requests per cycle at 1GHz

according to Cacti v6.5 [63], so 16 instruction caches are su�cient to service the 32 cores.

This configuration provides an unrealistic best-case issue rate for a 32-core TM. Table 2.2

shows the area of each major component in a 65nm process, and the total area for a 32-core

TM, sharing the multibanked Dcache and the 16 single-banked Icaches. Memory area

estimates are from Cacti v6.51.

Memory latency is also based on Cacti v6.5: 1 cycle to L1, and 3 cycles to L2. XU

area estimates are based on synthesized versions of the circuits using Synopsys Design-

Ware/Design Compiler and a commercial 65nm CMOS cell library. These execution unit

area estimates are conservative, as a custom-designed execution unit would certainly have

smaller area. All cells are optimized by Design Compiler to run at 1GHz and multicycle

cells are fully pipelined. The average core issue rate is 89%, meaning that an average of 28.5

cores are able to issue on every cycle. The raw performance of this configuration is very

1We note that Cacti v6.5 has been specifically enhanced to provide more accurate size estimates than
previous versions for relatively small caches of the type we are proposing.



16

Table 2.2: Feature areas and performance for the baseline over-provisioned 1GHz 32-core
TM configuration. In this configuration each core has a copy of every execution unit.

Unit Area Cycles Total Area
(mm2) (mm2)

4MB Dcache (32 banks) 1 33.5
4KB Icaches 0.07 1 1.12
128x32 RF 0.019 1 0.61
FP InvSqrt 0.11 16 3.61
Int Multiply 0.012 1 0.37
FP Multiply 0.01 2 0.33
FP Add/Sub 0.003 2 0.11
Int Add/Sub 0.00066 1 0.021
FP Min/Max 0.00072 1 0.023
Total 39.69

Avg thread issue MRPS/core MRPS/mm2

89% 5.6 0.14

good, but the area is huge. The next step is to reduce core resources to save area without

sacrificing performance. With reduced area the MRPS/mm

2 increases and provides an

opportunity to tile more TMs on a chip.

2.2.2 Area E�cient Resource Configurations

We now consider constraining caches and execution units to evaluate the design points

with respect to MRPS/mm2. Cache configurations are considered before shared execution

units, and then revisited for the final multi-TM chip configuration. All performance numbers

in our design space exploration are averages from the four scenes in Figure 2.3.

2.2.2.1 Caches

Our baseline architecture shares one or more instruction caches among multiple cores.

Each of these Icaches is divided into one or more banks, and each bank has a read port

shared between the cores. Our ~1000-instruction ray tracer program fits entirely into 4KB

instruction caches and provides a 100% hit-rate while double pumped at 1 GHz.

Our data cache model provides write-around functionality to avoid dirtying the cache

with data that will never be read. The only writes the ray tracer issues are to the write-only

frame bu↵er, which is typical behavior for ray tracers. Our compiler stores all temporary

data in registers, and does not use a call stack since all functions are inlined. BVH traversal

is handled with a special set of stack registers designated for stack nodes. Because of the

lack of writes to the cache, we achieve relatively high hit-rates even with small caches, as
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seen in Figure 2.4. Data cache lines are 8 4-byte words-wide (note that this is di↵erent from

the cache line size used in Chapter 3 and beyond).

We explore L1 Dcache capacities from 2KB to 64KB and banks ranging from 1 to

32, both in powers of 2 steps. Similarly, numbers and banks of Icaches range from 1 to 16.

First the interaction between instruction and data caches needs to be considered. Instruction

starvation will limit instruction issue and reduce data cache pressure. Conversely, perfect in-

struction caches will maximize data cache pressure and require larger capacity and increased

banking. Neither end-point will be optimal in terms of MRPS/mm

2. This interdependence

forces us to explore the entire space of data and instruction cache configurations together.

Other resources, such as the XUs, will also have an influence on cache performance, but

the exponential size of the entire design space is intractable. Since we have yet to discover

an accurate pruning model, we have chosen to evaluate certain resource types in order. It is

possible that this approach misses the optimal configuration, but our results indicate that

our solution is adequate.

After finding a “best” TM configuration, we revisit Dcaches and their behavior when

connected to a chip-wide L2 Dcache shared among multiple TMs. For single-TM simulations

we pick a reasonable L2 cache size of 256KB. Since only one TM is accessing the L2, this

results in unrealistically high L2 hit-rates, and diminishes the e↵ect that the L1 hit-rate has

on performance. We rectify this inaccuracy in section 2.2.2.3, but for now this simplified

processor, with caches designed to be as small as possible without having a severe impact
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on performance, provides a baseline for examining other resources, such as the execution

units.

2.2.2.2 Shared Execution Units

The next step is to consider sharing lightly used and area-expensive XUs for multiple

cores in a TM. The goal is area reduction without a commensurate decrease in performance.

Table 2.2 shows area estimates for each of our execution units. The integer multiply,

floating-point (FP) multiply, FP add/subtract, and FP inverse-square-root units dominate

the others in terms of area, thus sharing these units will have the greatest e↵ect on reducing

total TM area. In order to maintain a reasonably sized exploration space, these are the

only units considered as candidates for sharing. The other units are too small to have a

significant e↵ect on the performance-per-area metric.

We ran many thousands of simulations and varied the number of integer multiply, FP

multiply, FP add/subtract and FP inverse-square-root units from 1 to 32 in powers of 2

steps. Given N shared execution units, each unit is only connected to 32/N cores in order

to avoid complicated connection logic and area that would arise from full connectivity.

Scheduling conflicts to shared resources are resolved in a round-robin fashion.

Figure 2.5 shows that the number of XUs can be reduced without drastically lowering

the issue rate, and Table 2.3 shows the top four configurations that were found in this

phase of the design exploration. All of the top configurations use the cache setup found in

section 2.2.2.1: two instruction caches, each with 16 banks, and a 4KB L1 data cache with

8 banks and approximately 8% of cycles as data stalls for both our core-wide and chip-wide

simulations.
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Table 2.3: Optimal TM configurations in terms of MRPS/mm2.
INT FP FP FP MRPS/ Area MRPS/
MUL MUL ADD INV core (mm2) mm2

2 8 8 1 4.2 1.62 2.6
2 4 8 1 4.1 1.58 2.6
2 4 4 1 4.0 1.57 2.6
4 8 8 1 4.2 1.65 2.6

Area is drastically reduced from the original overprovisioned baseline, but performance

remains relatively unchanged. Table 2.4 compares raw compute and register resources for

our TM compared to a GTX285 SM. Our design space included experiments in which

additional thread contexts were added to the TMs, allowing context switching from a

stalled thread. These experiments resulted in 3-4% higher issue rate, but required much

greater register area for the additional thread contexts, so we do not include simultaneous

multithreading in future experiments.

2.2.2.3 Chip Level Organization

Given the TM configurations found in Section 2.2.2.2 that have the minimal set of

resources required to maintain high performance, we now explore the impact of tiling many

of these TMs on a chip. Our chip-wide design connects one or more TMs to an L2 Dcache,

with one or more L2 caches on the chip. Up to this point, all of our simulations have been

single-TM simulations which do not realistically model L1 to L2 memory tra�c. With many

TMs, each with an individual L1 cache and a shared L2 cache, bank conflicts will increase

and the hit-rate will decrease. This will require a bigger, more highly banked L2 cache.

Hit-rate in the L1 will also a↵ect the level of tra�c between the two levels of cache so we

Table 2.4: GTX285 SM vs. SPMD TM resource comparison. Area estimates are normal-
ized to our estimated XU sizes from Table 2.2, not from actual GTX285 measurements.

GTX285 SPMD
SM (8 cores) TM (32 cores)

Registers 16384 4096
FPAdds 8 8
FPMuls 8 8
INTAdds 8 32
INTMuls 8 2
Spec op 2 1

Register Area (mm2) 2.43 0.61
Compute Area (mm2) 0.43 0.26
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must explore a new set of L1 and L2 cache configurations with a varying number of TMs

connected to the L2.

Once many TMs are connected to a single L2, relatively low L1 hit-rates of 80-86%

reported in some of the candidate configurations for a TM will likely put too much pressure

on the L2. Figure 2.6(b) shows the total percentage of cycles stalled due to L2 bank conflicts

for a range of L1 hit-rates. The 80-86% hit-rate, reported for some initial TM configurations,

results in roughly one third of cycles stalling due to L2 bank conflicts. Even small changes

in L1 hit-rate from 85% to 90% will have an e↵ect on reducing L1 to L2 bandwidth, due

to the high number of cores sharing an L2. We therefore explore a new set of data caches

that result in a higher L1 hit-rate.

We assume up to four L2 caches can fit on a chip with a reasonable interface to main

memory. Our target area is under 200mm2, so 80 TMs (2560 cores) will fit even at 2.5mm2

each. Section 2.2.2.2 shows a TM area of 1.6mm2 is possible, and the di↵erence provides

room for additional exploration. The 80 TMs are evenly spread over the multiple L2 caches.

With up to four L2 caches per chip, this results in 80, 40, 27, or 20 TMs per L2. Figure 2.6(c)

shows the percentage of cycles stalled due to L2 bank conflicts for a varying number of TMs

connected to each L2. Even with a 64KB L1 cache with 95% hit-rate, any more than 20

TMs per L2 results in >10% of cycles as L2 bank conflict stalls. We therefore chose to

arrange the proposed chip with four L2 caches serving 20 TMs each. Figure 2.2 shows how

individual TMs of 32 threads might be tiled in conjunction with their L2 caches.
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The result of the design space exploration is a set of architectural configurations that

all fit in under 200mm2 and maintain high performance. A selection of these are shown in

Table 2.5 and are what we use to compare to the best known GPU ray tracer of the time in

Section 2.2.2.4. Note that the GTX285 has close to half the die area devoted to texturing

hardware, and none of the benchmarks reported in [4] or in our own studies use image-based

texturing. Thus it may not be fair to include texture hardware area in the MRPS/mm

2

metric. On the other hand, the results reported for the GTX285 do use the texture memory

to hold scene data for the ray tracer, so although it is not used for texturing, that memory

(which is a large portion of the hardware) is participating in the benchmarks.

Optimizing power is not a primary goal of the baseline TRaX design, and we address

power consumption by improving on the baseline architecture from Chapter 3 onward.

Still, to ensure we are within the realm of reason, we use energy and power estimates

from Cacti v6.5 and Synopsys DesignWare to calculate a rough estimate of our chip’s total

power consumption in these experiments. Given the top chip configuration reported in

Table 2.5, and activity factors reported by our simulator, we roughly estimate a chip power

consumption of 83 watts, which we believe is in the range of power densities for commercial

GPUs.

2.2.2.4 Baseline TRaX Results

To evaluate the results of our design space exploration we chose two candidate architec-

tures from the top performers: one with small area (147mm2) and the other with larger area

(175mm2) but higher raw performance (as seen in Table 2.5). We ran detailed simulations

of these configurations using the same three scenes as in [4] and using the same mix of

primary and secondary rays. Due to the widely di↵ering scenes and shading computations

Table 2.5: A selection of our top chip configurations and performance compared to an
NVIDIA GTX285 and Copernicus. Copernicus area and performance are scaled to 65nm
and 2.33 GHz to match the Xeon E5345, which was their starting point. Each of our SPMD
Thread Multiprocessors (TM) has 2 integer multiply, 8 FP multiply, 8 FP add, 1 FP invsqrt
unit, and 2 16-banked Icaches.

L1 L1 L2 L2 L1 L2 Bandwidth (GB/s) Thread Area MRPS/

Size Banks Size Banks Hitrate Hitrate L1 L2 DRAM Issue (mm2) MRPS mm2

32KB 4 256KB 16 93% 75% 42 56 13 70% 147 322 2.2
32KB 4 512KB 16 93% 81% 43 57 10 71% 156 325 2.1
32KB 8 256KB 16 93% 75% 43 57 14 72% 159 330 2.1
32KB 8 512KB 16 93% 81% 43 57 10 72% 168 335 2.0
64KB 4 512KB 16 95% 79% 45 43 10 76% 175 341 1.9
GTX285 (area is from 65nm GTX280 version for better comparison) 75% 576 111 0.2
GTX285 SIMD core area only — no texture unit (area is estimated from die photo) 75% ~300 111 0.37
Copernicus at 22nm, 4GHz, 115 Core2-style cores in 16 tiles 98% 240 43 0.18
Copernicus at 22nm, 4GHz, with their envisioned 10x SW improvement 98% 240 430 1.8
Copernicus with 10x SW improvement, scaled to 65nm, 2.33GHz 98% 961 250 0.26
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used in [4] and [32], a direct comparison between both architectures is not feasible. We chose

to compare against [4] because it represents the best reported performance at the time for

a ray tracer running on a GPU, and their ray tracing application is more similar to ours.

We do, however, give a high level indication of the range of performance for our SPMD

architecture, GTX285 and Copernicus, in Table 2.5. In order to show a meaningful area

comparison, we used the area of a GTX280, which uses a 65nm process, and other than clock

frequency, is equivalent to the GTX285. Copernicus area is scaled up from 22nm to 65nm.

Assuming that their envisioned 240mm2 chip is 15.5mm on each side, a straightforward

scaling from 22nm to 65nm would be a factor of three increase on each side, but due to

certain process features not scaling linearly, we use a more realistic factor of two per side,

giving a total equivalent area of 961mm2 at 65nm. We then scaled the assumed 4GHz clock

frequency from Govindaraju et al. down to the actual 2.33GHz of the 65nm Clovertown core

on which their original scaling was based. The 10x scaling due to algorithmic improvements

in the Razor software used in the Copernicus system is theoretically envisioned [32].

The final results and comparisons to GTX285 are shown in Table 2.6. It is interesting to

note that although GTX285 and Copernicus take vastly di↵erent approaches to accelerating

ray-tracing, when scaled for performance/area they are quite similar. It is also interesting

to note that although our two candidate configurations perform di↵erently in terms of raw

performance, when scaled for MRPS/mm

2 they o↵er similar performance, especially for

secondary rays.

Table 2.6: Comparing our performance on two di↵erent core configurations to the GTX285
for three benchmark scenes [4]. Primary ray tests consisted of 1 primary and 1 shadow ray
per pixel. Di↵use ray tests consisted of 1 primary and 32 secondary global illumination rays
per pixel.

Conference (282k triangles) Fairy (174k triangles) Sibenik (80k triangles)
SPMD Ray SPMD SPMD SPMD SPMD SPMD SPMD

Type Issue Rate MRPS Issue Rate MRPS Issue Rate MRPS
147mm2 Primary 74% 376 70% 369 76% 274

Di↵use 53% 286 57% 330 37% 107
175mm2 Primary 77% 387 73% 421 79% 285

Di↵use 67% 355 70% 402 46% 131

SIMD Ray GTX GTX GTX GTX GTX GTX
Type SIMD e↵. MRPS SIMD e↵. MRPS SIMD e↵. MRPS

GTX285 Primary 74% 142 76% 75 77% 117
Di↵use 46% 61 46% 41 49% 47

SPMD MRPS/mm2 ranges from 2.56 (Conference, primary rays) to 0.73 (Sibenik, di↵use rays) for both configs
SIMD MRPS/mm2 ranges from 0.25 (Conference, primary rays) to 0.07 (Fairy, di↵use rays)
SIMD (no texture area) MRPS/mm2 ranges from 0.47 (Conference, primary) to 0.14 (Fairy, di↵use)
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When our raw speed is compared to the GTX285, our configurations are between 2.3x

and 5.6x faster for primary rays (average of 3.5x for the three scenes and two SPMD

configurations) and 2.3x to 9.8x faster for secondary rays (5.6x average). We can also see

that our thread issue rates do not change dramatically for primary vs. secondary rays,

especially for the larger of the two configurations. When scaled for MRPS/mm

2, our

configurations are between 8.0x and 19.3x faster for primary rays (12.4x average), and

8.9x to 32.3x faster for secondary rays (20x average). Even if we assume that the GTX285

texturing unit is not participating in the ray-tracing, and thus use a 2x smaller area estimate

for that processor, these speed-ups are still approximately 6x-10x on average.

We have developed a baseline custom ray-tracing architecture, with flexible programma-

bility and impressive performance, that we believe serves as an excellent platform for further

development. In the following chapters, we address the more important concerns of energy

consumption, while maintaining this baseline’s rays per second performance.



CHAPTER 3

RAY TRACING FROM A DATA

MOVEMENT PERSPECTIVE

CPUs and GPUs for modern mobile, desktop, and server systems devote tremendous

resources to facilitating the movement of data to and from the execution resources, and

TRaX is no exception to this. For certain workloads, such as sorting, data movement is the

primary goal; but for most workloads, including graphics, the task of moving data to the

execution units is a secondary requirement of the primary task of performing mathematical

operations on that data. Essentially, real work only happens when operator meets operand.

Ideally the e↵ort spent to make that meeting happen should not trump the e↵ort spent

on the execution itself. In a general purpose or programmable processing regime, the

execution units are fed with operations and operands by a massive network and memory

storage systems. Figure 3.1 shows a simplified example of such a network.

RFIF/ID

I$ L1
D$

L2
$

XU

DRAMDisk

Figure 3.1: A simplified processor data movement network. Various resources to move
data to the execution unit (XU) include an instruction cache (I$), instruction fetch/decode
unit (IF/ID), register file (RF), L1 data cache(D$), L2 shared cache, DRAM, and Disk.
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For each atom of work (instruction), some or all of the following memory systems must

be activated:

• Instruction Fetch - the instruction is fetched from an instruction cache to the

decoder/execution unit. In a general purpose processor, an instruction is typically

a single mathematical operation, such as comparing or multiplying two numbers.

• Register File - operands for the instruction are fetched from the register file and a

result may be sent back to the register file.

• Main Memory Hierarchy - the register file and instruction cache are backed by the

main memory hierarchy. In the case of overflowing, instructions, operands, or results

are fetched from/sent to the main memory hierarchy, activating potentially all of the

following systems:

– Cache Hierarchy - if the working set of data is too large for the register file,

data is is transferred to and from the cache hierarchy, consisting of one or more

levels of on-chip memory. If the data required is not found in the first level, the

next level is searched, and so on. Typically each consecutive level of cache is

larger, slower, and more energy consumptive than the previous. The goal of this

hierarchy is to keep data as close to the register file and instruction fetch units

as possible.

– DRAM - if the data is not found in the cache hierarchy, it must be transferred

from o↵-chip DRAM, which is much larger, slower, and more energy consumptive

than the caches.

– Disk - in the event the data is not even contained in DRAM, the much slower

disk or network storage must be accessed. This is not common in real-time

rendering systems, and we will not focus on this interface, although it is a major

concern in o✏ine rendering [26].

The interfaces between these memory components can only support a certain maximum

data transfer rate (bandwidth). If any particular memory interface cannot provide data

as fast as the execution units require it, that interface becomes a bottleneck preventing

execution from proceeding any faster. If this happens, although execution units may be

available to perform work, they have no data to perform work on. Designing a high

performance compute system involves finding the right balance of execution and data
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movement resources within the constraints of the chip, limited not only by die area, but

also power consumption [23, 87]. Table 3.1 shows the simulated area, energy, and latency

costs for the execution units and various data movement resources in a basic many-core

TRaX system. We can see that the balance of resources is tipped heavily in favor of

data movement, and this is not unique to TRaX. This balance can be tuned with both

hardware and software techniques. Since di↵erent applications can have widely varying

data movement requirements, we can take heavy advantage of specialization if the desired

application domain is known ahead of time.

An application specific integrated circuit (ASIC) takes specialization to the extreme and

can achieve vast improvements in energy e�ciency over a general purpose programmable

processor [24, 58, 39]. Instead of performing a sequence of generic single instructions at a

time, which combined makes up a more complex programmable function, an ASIC performs

exactly one specific function. These functions are typically much more complex than the

computation performed by a single general purpose instruction, and the circuitry for the

function is hard-wired on the chip. This fixed-function circuitry removes some of the data

movement overheads discussed above. Specifically, instructions need not be fetched, and

operands and intermediate results flow directly from one execution unit to the next, avoiding

expensive round trips to the register file and/or data caches. These overheads can be up

to 20⇥ more energy consumptive than the execution units themselves [36]. The downside

to an ASIC is the lack of programmability. If the desired computation changes, an ASIC

cannot adapt.

Less extreme specialization techniques can have many of the same energy saving benefits

as an ASIC but without sacrificing as much programmability. If the application can take

advantage of SIMD parallelism, the cost of fetching an instruction for a specific operation is

amortized over multiple sets of parallel data operands. An N-way SIMD processor fetches

up to N⇥ fewer instructions to perform the same work as a scalar processor working

on parallel data. Alternatively, very large instruction word (VLIW) architectures encode

multiple operations into a single instruction. This makes the instructions larger, but a

Table 3.1: Resource cost breakdown for a 2560-thread TRaX processor.
Die Area (mm2) Avg. Activation Energy (nJ) Avg. Latency (ns)

Execution Units 36.7 0.004 1.35
Register Files 73.5 0.008 1

Instruction Caches 20.9 0.013 1
Data Caches 45.5 0.174 1.06

DRAM n/a 20 - 70 20 - 200



27

single instruction fetched can perform a complex computation kernel that is the equivalent

of many simpler single instructions. This requires the compiler to be able to identify these

kernels in a programmable workload. Adding VLIW and SIMD execution to an otherwise

general purpose processor, Hameed et al. report a tenfold reduction in the instruction fetch

energy consumption when operating on certain workloads [36].

Even within a general purpose domain, many applications exhibit common microkernels

of computation, such as multiply-accumulate, in which the product of two numbers must

be added to an accumulator. This is a common operation in many algorithms, including

computer graphics. Similar to an ASIC, the two operations can be fused into a pipeline

and activated with a single instruction, and unlike VLIW, the instruction word size does

not need to increase. Although the kernel is much smaller than a typical ASIC pipeline,

it provides many of the same benefits while retaining programmability. The benefit gained

from this type of operation fusion depends on how frequently the kernel is used. Hameed

et al. report an extra 1.1⇥-to-1.9⇥ energy reduction in the instruction fetch and register

file energy, on top of existing VLIW and SIMD enhancements [36].

Prebaked fused operations in a general purpose architecture such as multiply-add are

necessarily very simple in order to be broadly applicable. An application may have unique

microkernels that a chip designer could not anticipate. CoGene [80] is a compiler system

that automatically detects the data movement needs of kernels within a program, and

dynamically generates “fused” operations by rerouting data through a flexible interconnect,

given the resources available on the chip. Such a system can provide greater ASIC-like

benefits than the simplest assumed micro kernels like multiply-add, yet avoid becoming

overly specific to remain applicable to a wide range of applications.

As previously mentioned, if the application domain is known, further opportunities can

be exploited. Particularly, graphics workloads consist of large amounts of 3D vector math,

such as vector addition or dot products. Table 3.2 summarizes the potential energy savings

for fusing various common 3D vector operations in a TRaX system. If vector operands

were encoded with a single base register address, the instruction size would not increase. In

Section 3.2, we explore even further specialized fused operations specifically for ray traced

graphics.

The data cache hierarchy exists to relieve pressure on the main DRAM. The goal is to

keep portions of main memory data as close to the execution units as possible to reduce

the cost of data movement. If successful, the portions kept in the cache at any given time

are the portions that will need frequent reuse during and around that time period. From a
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Table 3.2: Instruction cache and register file activation counts for various 3D vector
operations for general purpose (GP) vs. fused pipeline units. Results are given as GP
/ Fused. Energy Di↵ shows the total “Fused” energy as a percentage of “GP”. Activation
energies are the estimates used in [51].

Instruction Cache Register File Energy Di↵
add/sub 3 / 1 9 / 7 61%
mul 3 / 1 9 / 5 47%
dot 5 / 1 15 / 7 37%
cross 9 / 1 27 / 7 20%

hardware perspective, caches are typically designed to improve cache residency for a broad

range of general applications, but even general purpose caches can see greatly increased

e↵ectiveness if the software utilizes cache-aware data access patterns. In some cases this is

a simple change of stride or reordering of sequential accesses, but other cases require drastic

algorithmic changes. In Section 3.1, we discuss how ray tracers can be modified to take

special advantage of data access patterns.

3.1 Ray Tracer Data
In a typical ray tracer, just like any general purpose workload, instructions and operand

data must be moved to the execution units. The operand data in a ray tracer is essentially

the scene to be rendered, and light rays. The scene data are comprised of the geometry

defining the shape of objects, and materials defining how light interacts with those objects.

The geometry is typically a large mesh of triangles, but must be augmented with auxiliary

data (an acceleration structure) that arranges the geometry in a more e�ciently accessible

way. The materials are composed of simple colors, reflection/transmission parameters,

emission parameters, and textures. Ray data are usually programmatically generated one

ray at a time, and fit in registers. Scene data, however, are usually very large, with no

hope of fitting entirely in the registers or caches, so the main memory hierarchy is of key

importance in a ray-tracing system.

All high-performance ray tracers organize the scene into an acceleration structure of

some sort, which permits fast pruning of the set of geometry a ray is likely to intersect [44].

Common structures are kd-trees, bounding volume hierarchies (BVHs), oct-trees, and grids.

BVHs are the most commonly used in high-performance ray tracers [75, 102], and we focus

on BVHs in this work as well. A BVH is a tree structure in which each child subtree contains

a smaller, more localized portion of the scene, plus an auxiliary volume that spatially bounds
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that portion of the scene. Determining the geometry a ray may intersect involves traversing

this tree based on whether or not the ray intersects the bounding volume of any given node.

The order that nodes are traversed, and thus loaded from memory, is very unpredictable,

particularly when global illumination e↵ects generate random and incoherent rays. This

unpredictable memory access pattern makes it very challenging for the cache hierarchy

to keep a working set of data near the execution units for very long. This problem is

exacerbated when parallel execution threads traverse multiple rays simultaneously using a

shared cache, since individual rays can take drastically di↵erent paths through the BVH.

Finding cache-friendly access patterns in BVH traversal is not a trivial task, and requires

significant algorithmic changes as opposed to, for example, simply reordering the access

order of a loop. Recent work has explored a variety of ways to increase data access e�ciency

in ray-tracing. These approaches typically involve grouping rays together and processing

more than one at a time. Usually these groups are either spatially coherent rays, i.e.,

rays with a common origin and similar direction, or more directly, structurally coherent

rays, i.e., rays known to access the same portions of the acceleration structure. Software

approaches involve gathering rays into coherent packets to better match the SIMD execution

model [9, 12, 34, 73]. These systems also tend to increase cache hit rates because the ray

packets operate on similar regions of interest. Packet techniques can have limited utility

with highly incoherent rays, since packets must be broken apart if rays within them do not

follow the same path through the BVH.

More directly related to this work, specific approaches to more e↵ective memory band-

width utilization can involve cache-conscious data organization [77, 20, 78, 57], and ray

reordering [95, 13, 68, 61]. Some researchers employ image-space rather than data-space

partitioning for rays [45, 14, 15]. Stream-based approaches to ray generation and processing

have also been explored both in a ray-tracing context [33, 82, 97, 2, 67] and a volume-

rendering context [22]. Although technical details are limited, at least two commercial

hardware approaches to ray-tracing appear to use some sort of ray sorting and/or classifi-

cation [59, 90]. PowerVR [59] enqueues rays at each node in the BVH, deferring processing

until a bundle of them are available, and using a sophisticated scheduler to decide which

bundle to process next.

3.1.1 Treelets

We use a form of ray reordering based on recent work [67, 2], in which rays are specifically

grouped together based on their location in the acceleration structure, allowing certain

guarantees about data access coherence. The BVH tree is partitioned into sub-groups
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called treelets, sized to fit comfortably in either the L1 or L2 data cache. Each node in

the BVH belongs to exactly one treelet, and treelet identification tags are stored along

with the node ID. During traversal, when a ray crosses a treelet boundary, it is sent to a

corresponding ray bu↵er, where its computation is deferred until a processor is assigned to

that bu↵er. In this scheme, a processor will work for a prolonged period of time only on rays

that traverse a single treelet. This allows that subset of BVH data (the treelet) to remain in

the processor’s cache for a long time and drastically increase cache hit rates. This technique

requires many rays to be in flight at once in order to fill the treelet ray bu↵ers, as opposed

to the typical single ray or small ray packet per core model. The state of each ray must

be stored in global memory and passed along to other processors as needed. Ideally, this

auxiliary ray state storage should not increase o↵-chip bandwidth consumption drastically,

since reducing DRAM bandwidth is the end goal.

Both Navrátil et al. [67] and Aila et al.[2] store treelet ray bu↵ers in main memory.

While this does generate extra DRAM tra�c in the form of rays, it reduces geometry tra�c

by a greater amount. Navrátil et al. report up to 32⇥ reduction in DRAM tra�c for

primary rays, and 60⇥ for shadow rays, while Aila et al. extend the work to massively

parallel GPU architectures and report a tenfold reduction for di�cult scenes rendered with

global illumination.

3.2 Streaming Treelet Ray Tracing Architecture
(STRaTA)

We expand on treelet techniques with hardware support for ray bu↵ers and also take

advantage of opportunities in the data access patterns imposed by the algorithmic changes

for processing treelets. In contrast to previous work, we store the ray state in a bu↵er

on-chip, therefore storing or retrieving rays does not a↵ect the consumed DRAM bandwidth,

however, the added on-chip data movement costs must still be carefully considered. We

combine this with additional hardware specialization for reducing the instruction fetch and

register file data movement using reconfigurable macro instruction pipelines, which are

dynamically configured under program control (Section 7.1.2). These pipelines consist of

execution units (XUs), multiplexers (MUXs), and latches that are shared by multiple thread

processors. We construct two special purpose pipelines: one for bounding volume hierarchy

box intersection and the other for triangle intersection. The essential benefit of this tactic

is to replace a large number of conventional instructions with a single large fused box or

triangle intersection instruction, similar to the techniques discussed earlier in this Chapter

and in Table 3.2. The energy e�ciency of these pipelines is similar to an ASIC design
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except for the relatively small energy overhead incurred by the MUXs and slightly longer

wire lengths [58, 39, 80]. However, unlike ASICs, our pipelines are flexible, since they are

configured under program control.

We will use TRaX as a starting point, since it has demonstrated impressive preliminary

performance and is supported by powerful simulation and compiler toolchains [38]. These

tools make the architecture, ISA, and API amenable to modifications as needed.

3.2.1 Ray Stream Bu↵ers

We adapt Aila’s approach by partitioning a special purpose ray stream memory that

replaces some or all of the L2 data cache. This avoids auxiliary tra�c by never saving ray

state o↵-chip, at the cost of a lower total number of rays in flight, which are limited by the

size of the ray stream partition. The TRaX architecture uses very simple direct-mapped

caches, which save area and power over more complex associative caches. We assign treelets

to be exactly the size of an L1 cache, and the BVH builder arranges the treelets into cache-

aligned contiguous address spaces. Since the L1 only contains treelet data, this guarantees

that while a TM is working on a specific treelet, each line in the TM’s L1 cache will incur

at most one miss, and will be transferred to the L1 only once.

We also modify Aila’s algorithm to di↵erentiate triangle data from BVH data, and

assign each to a separate type of treelet (see Figure 3.2). Note that triangle treelets are

not technically a “tree,” but simply a collection of triangles in nearby leaf nodes. This

ensures that any TM working on a leaf or triangle treelet is doing nothing but triangle

intersections, allowing us to configure a specialized pipeline for triangle intersection (see

Section 7.1.2). Similarly, when working on a nonleaf BVH treelet, the TM is computing

only ray-box intersections, utilizing a box intersection pipeline.

The ray stream memory holds the ray bu↵ers for every treelet. Any given ray bu↵er can

potentially hold anywhere from zero rays up to the maximum number that fit in the stream

memory, leaving no room for any of the other bu↵ers. The capacity of each ray bu↵er is

thus limited by the number of rays in every other bu↵er. Although the simulator models

these dynamically-sized ray bu↵ers as a simple collection data structure, we envision a

hardware model in which they are implemented using a hardware managed linked-list state

machine with a pointer to the head of each bu↵er stored in the SRAM. Link pointers for

the nodes and a free list could be stored within the SRAM as well. This would occupy a

small portion of the potential ray memory: not enough to drastically a↵ect the total number

of rays in flight, since it requires eight percent or less of the total capacity for our tested

configurations. The energy cost of an address lookup for the head of the desired ray bu↵er,
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Figure 3.2: Treelets are arranged in to cache-sized data blocks. Primitives are stored in a
separate type of “treelet” (red) di↵erentiated from node treelets (blue).

plus the simple circuitry to handle the constant time push and pop operations onto the end

of the linked list is assumed to be roughly equal to the energy cost of the tag and bank

circuitry of the L2 cache that it is replacing.

Note that the order in which the ray data entries in these bu↵ers are accessed within a

TM is not important. All rays in a bu↵er will access the same treelet, which will eventually

be cache-resident. Rays that exit that treelet will be transferred to a di↵erent treelet’s ray

bu↵er. In this work, we employ singly linked lists which are accessed in a LIFO manner.

This choice minimizes hardware overhead, allows a large number of these LIFO structures

to co-exist in a single memory block, and removes the need to keep each structure in a

contiguous address space.

The programmer fills the ray bu↵ers with some initial rays before rendering begins, using

provided API functions to determine maximum stream memory capacity. These initial rays

are all added to the bu↵er for the top-level treelet containing the root node of the BVH.

After the initial rays are created, new rays are added to the top treelet ray bu↵er, but only

after another ray has finished processing. When a ray completes traversal, the executing

thread may either generate a new secondary shadow ray or global illumination bounce

ray for that path, or a new primary ray if the path is complete. Rays are removed from

and added to the bu↵ers in a one-to-one ratio, where secondary rays replace the ray that

spawned them to avoid overflowing on-chip ray bu↵ers. Managing ray generation is done

by the programmer with the help of the API. For example, during shading (when a ray has
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completed traversal/intersection), if another ray must be generated as part of the shader,

the programmer simply adds that ray with the same pixel ID and updated state (such as

ray type) to the root treelet ray bu↵er, instead of immediately invoking a BVH traversal

routine.

Each ray requires 48 bytes comprised of: ray origin and direction (24 bytes total), ray

state (current BVH node index, closest hit, traversal state, ray type, etc. totaling 20 bytes),

and a traversal stack (4 bytes, see Section 3.2.2).

3.2.2 Traversal Stack

E�cient BVH traversal attempts to minimize the number of nodes traversed by finding

the closest hit point as early as possible. If a hit point is known and it lies closer than

the intersection with a BVH node, then the traversal can terminate early by ignoring that

branch of the tree. To increase the chances of terminating early, most ray tracers traverse

the closer BVH child first. Since it is nondeterministic which child was visited first, typically

a traversal stack is used to keep track of nodes that need to be visited at each level. One can

avoid a stack altogether by adding parent pointers to the BVH, and using a deterministic

traversal order (such as always left first, then right), this, however, eliminates the possibility

of traversing the closer child first and results in less e�cient traversal.

Streaming approaches, such as the one used in this work, typically require additional

memory space to store ray state. Rays are passed around from core to core via memory

bu↵ers. In our case, the more rays present in a bu↵er, the longer a TM can operate on

that treelet, increasing the energy savings by not accessing o↵-chip memory during that

computation. Storing the entire traversal stack with every ray has a very large memory

cost, and would reduce the total number of rays in flight significantly. There have been

a number of recent techniques to reduce or eliminate the storage size of a traversal stack,

at the cost of extra work during traversal or extra data associated with the BVH, such as

parent pointers [91, 53, 37].

We use a traversal technique in which parent pointers are included with the BVH, so

full node IDs are not required for each branch decision. We do, however, need to keep track

of which direction (left child or right child) was taken first at each node. To reduce the

memory cost of keeping this information, we store the direction as a single bit on a stack,

and thus a 32-entry stack fits in one integer. Furthermore, there is no need for a stack

pointer, as it is implied that the least significant bit (LSB) is the top of the stack. Stack

operations are simple bitwise integer manipulations: shift left one bit to push, shift right

one bit to pop. In this scheme, after a push, either 1 is added to the stack (setting the LSB
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to 1, corresponding to left), or it is left alone (leaving the LSB as 0, corresponding to right).

After visiting a node’s subtree, we examine the top of the stack. If the direction indicated

on the top of the stack is equal to which side the visited child was on, then we traverse the

other child if necessary; otherwise we are done with both children and pop the stack and

continue moving up the tree.

3.2.3 Reconfigurable Pipelines

One of the characteristics of ray-tracing is that computation can be partitioned into

distinct phases: traversal, intersection, and shading. The traversal and intersection phases

have a small set of specific computations that dominate time and energy consumption. If the

available XUs in a TM could be connected so that data could flow directly through a series

of XUs without fetching new instructions for each operation, a great deal of instruction

fetch and register file access energy could be saved. We propose repurposing the XUs by

temporarily reconfiguring them into a combined ray-triangle or ray-box intersection test

unit using a series of latches and MUXs when the computation phase can make e↵ective use

of that functionality. The overhead for this reconfigurability (i.e. time, energy and area)

is fairly low, as the MUXs and latches are small compared to the size of the floating-point

XUs, which themselves occupy a small portion of the circuit area of a TM [58, 39, 81, 80].

Consider a hardware pipeline test for a ray intersection with an axis-aligned box. The

inputs are four 3D vectors representing the two corners of the bounding box, the ray origin,

and ray direction (12 floats total). Although the box is stored as two points, it is treated

as three pairs of planes – one for each dimension in 3D [91, 104]. The interval of the ray’s

intersection distance between the near and far plane for each pair is computed, and if there

is overlap between all three intervals, the ray hits the box, otherwise it misses. The bulk of

this computation consists of six floating-point multiplies and six floating-point subtracts,

followed by several comparisons to determine if the intervals overlap. Figure 3.3 shows a

data-flow representation of ray-box intersection, which we use to determine how to connect

the available XUs into a macroinstruction pipeline.

The baseline TRaX processor has eight floating point multiply, and eight floating point

add/subtract units shared within a TM, which was shown to be an optimal configuration in

terms of area and utilization for simple path tracing [52]. Our ray-box intersection pipeline

uses six multipliers and six add/subtract units, leaving two of each for general purpose use.

The comparison units are simple enough that adding extra ones as needed for the pipeline

to each TM has a negligible e↵ect on die area. The multiply and add/subtract units have

a latency of two cycles in 65nm at 1GHz, and the comparisons have a latency of one cycle.
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Figure 3.3: Data-flow representation of ray-box intersection. The red boxes at the top
are the inputs (3D vectors), and the red box at the bottom is the output. Edge weights
indicate operand width.

The box-test unit can thus be fully pipelined with an initiation interval of one and a latency

of eight cycles.

Ray-triangle intersection is typically determined based on barycentric coordinates [60],

and is considerably more complex than ray-box intersection. We remapped the computation

as a data-flow graph, and investigated several potential pipeline configurations. Because an

early stage of the computation requires a high-latency divide (16 cycles), all of the options

have prohibitively long initiation intervals, and result in poor utilization of execution units

and low performance. An alternative technique uses Plücker coordinates to determine

hit/miss information [88], and requires the divide at the end of the computation, but only

if an intersection occurs. If a ray intersects a triangle, we perform the divide as a separate

operation outside of the pipeline (Figure 3.4). Of the many possible ray-triangle intersection

pipelines, we select one with a minimal resource requirement of four multipliers and two

adders, which results in an initiation interval of 18, a latency of 31 cycles, and an issue

width of two.
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Figure 3.4: Data-flow representation of ray-triangle intersection using Plücker coordi-
nates [88]. The red boxes at the top are the inputs, and the red box at the bottom is the
output. All edges represent scalar operands.

The final stage shades the ray without reconfiguring the TM pipeline. In our test scenes,

Lambertian shading is a small portion of the total computation, and threads performing

shading can take advantage of the leftover general purpose XUs without experiencing severe

starvation. Alternatively, if shading were more computationally intensive or if the data

footprint of the materials were large, the rays could be sent to a separate bu↵er or be

processed by a pipeline configured for shading.

The programmer invokes and configures these phase-specific pipelines with simple com-

piler intrinsics provided in the API. Once a TM is configured into a specific pipeline,

all of the TPs within operate in the same mode until reconfigured. Since the pipelines

have many inputs, the programmer is also responsible for loading the input data (a ray

and a triangle/box) into special input registers via the API and compiler intrinsics. This
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methodology keeps the instruction set simple and avoids any long or complex instruction

words.

3.2.4 Results

We use three ray-tracing benchmark scenes to evaluate the performance of our proposed

STRaTA technique versus the TRaX baseline: Sibenik, Vegetation, and Hairball, as shown

in Figure 3.5 (along with other benchmarks discussed later). All scenes are rendered using

a single point-light source with simple path tracing [47], because this generates incoherent

and widely scattered secondary rays that provide a worst-case stress test for a ray-tracing

architecture. We use a resolution of 1024⇥1024, and a maximum ray-bounce depth of

five, resulting in up to 10.5 million ray segments per frame. Vegetation and Hairball have

extremely dense, finely detailed geometry. This presents challenges to the memory system,

as rays must traverse a more complex BVH, and incoherent rays access large regions of

the geometry footprint in unpredictable patterns. Sibenik is a much smaller scene with

simpler architectural geometry, but is an enclosed scene forcing ray paths to reach maximum

recursion depth before terminating.

We start with a baseline TRaX processor with a near-future L2 cache capacity of 4MB

shared among the TMs on the chip (current top-end GPUs have up to 1.5MB of on-chip L2).

The o↵-chip memory channels are capable of delivering a max bandwidth of 256GB/s from

DRAM, similar to high-end GPUs of the time. Figure 3.6 shows performance in frames per

second using this baseline configuration for a varying number of TMs. Recall that each TM

consists of 32 thread processors, shared L1 instruction and data caches, and a set of shared

functional units. On Hairball and Vegetation, performance quickly plateaus at 48 - 64 TMs

for the basic non-streaming path tracer, and on Sibenik begins to level o↵ rapidly around

112 TMs. After these plateau points, the system is unable to utilize any more compute

resources due to data starvation from insu�cient o↵-chip DRAM bandwidth.

The STRaTA treelet-streaming model improves L1 hit rates significantly, but rather

than remove the L2 cache completely, we include a small 512KB L2 cache in addition to

the stream memory to absorb some of the remaining L1 misses. Figure 3.6 also shows

performance for the proposed STRaTA technique with increasing numbers of TMs. Per-

formance does not di↵er drastically between the two techniques, and in fact, the STRaTA

technique has higher performance once the baseline is bandwidth constrained. The baseline

performance will always be slightly higher if neither technique is bandwidth constrained,

since the baseline has no treelet overhead. For the remainder of our experiments, we use
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Sibenik Cathedral
80K triangles

Fairy Forest
174K triangles

Crytek Sponza
262K triangles

Conference
283K triangles

Dragon
870K triangles

Dragon Box
870K triangles

Buddha
1.1M triangles

Buddha Box
1.1M triangles

Vegetation
1.1M triangles

Sodahall
2.2M triangles

Hairball
2.9M triangles

San Miguel
10.5M triangles

Figure 3.5: Benchmark scenes used to evaluate performance for STRaTA and a baseline
pathtracer.
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Figure 3.6: Performance on three benchmark scenes with varying number of TMs. Each
TM has 32 cores. Top graph shows baseline performance and bottom graph shows the
proposed technique. Performance plateaus due to the 256GB/s bandwidth limitation.

128 TMs (4K TPs), representing a bandwidth constrained configuration with a reasonable

number of cores for current or near-future process technology.

Figure 3.7 shows the on-chip memory access behavior for each scene. The solid lines

show total number of L1 misses (and thus L2 cache accesses), while the dotted lines show the

total number of accesses to the stream memory for our proposed STRaTA technique. The

size of the L2 cache (baseline) and stream memory (STRaTA) are the same. Reducing the

number of accesses to these relatively large on-chip memories reduces energy consumption.

The significant increase in L1 hit rate also decreases o↵-chip memory bandwidth by up to

70% on the Sibenik scene, and up to 27% on the larger scenes, which has an even more

dramatic energy impact.

Note in Figure 3.7 that the number of L1 misses for the baseline technique increases (and

thus L1 hit rate decreases) as the L2 capacity and frame rate increases. While this initially

seems counterintuitive, there is a simple explanation. The L1 cache is direct mapped and

shared by 32 threads, which leads to an increased probability of conflict misses. As the size

of the L2 cache increases, each thread has a reduced probability of incurring a long-latency

data return from main memory since it is more likely that the target access will be serviced

by the L2 cache. The increased performance of each thread generates a higher L1 access
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Figure 3.7: Number of L1 misses (solid lines) for the baseline, and the proposed STRaTA
technique and stream memory accesses (dashed line) on the three benchmark scenes. L1 hit
rates range from 93% - 94% for the baseline, and 98.5% to 99% for the proposed technique.

rate, causing more sporadic data-access patterns. The result is an increase in the number

of L1 conflict misses. The number of stream accesses is constant with regards to the size of

the stream memory, because it is only a↵ected by the number of treelet boundaries that an

average ray must cross during traversal. Since the treelet size is held constant, the stream

access patterns are only a↵ected by the scene. Increasing the stream size does, however,

increase the average number of rays in each treelet bu↵er, which allows a TM to spend more

time processing while the treelet’s subset of BVH data is cached in L1.

Figures 3.8 through 3.10 show the energy consumption per frame considering the L2

cache vs. stream memory accesses and o↵-chip memory accesses for each scene, based on

the energy per access estimates in Table 3.3. All energy estimates are from Cacti 6.5 [63].

Not surprisingly, the baseline L2 cache energy consumption increases as larger capacities not

only cause higher L1 miss rates (Figure 3.7), but also consume more energy per access. The
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Figure 3.8: E↵ect of L2 cache size (Baseline) and stream memory size (STRaTA) on
memory system energy for the Sibenik scene.
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Figure 3.9: E↵ect of L2 cache size (Baseline) and stream memory size (STRaTA) on
memory system energy for the Vegetation scene.
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Figure 3.10: E↵ect of L2 cache size (Baseline) and stream memory size (STRaTA) on
memory system energy for the Hairball scene.

Table 3.3: Estimated energy per access in nanojoules for various memories. Estimates are
from Cacti 6.5.

L2/Stream memories Inst. Cache Reg. File O↵-Chip
512KB 1MB 2MB 4MB 8MB 16MB 4KB 128B DRAM
0.524 0.579 0.686 0.901 1.17 1.61 0.014 0.008 16.3

proposed STRaTA technique consumes significantly less energy, but follows a similar curve.

Note that the L1 misses (L2 accesses) for the proposed STRaTA technique in Figure 3.7

are to a fixed small, low energy 512KB L2 cache. The bulk of the energy is consumed by

the stream memory accesses, the number of which is fixed, regardless of the stream memory

size.

In addition to reducing memory tra�c from the treelet-stream approach, we propose

configuring the shared XUs into phase-specific pipelines to perform box and triangle in-

tersection functions. The e↵ect of these pipelines is a reduction in instruction fetch and

decode energy, since a single instruction is fetched for a large computation; and a reduction

in register file accesses, since data is passed directly between pipeline stages. By engaging

these phase-specific pipelines, we see a reduction in instruction fetch and register file energy

of between 11% and 28%.
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The total energy used per frame for a path tracer in this TRaX-style architecture is

a function of the size of the L2 cache or stream memory, and whether the phase-specific

pipelines are used. If we combine the two enhancements, we see a total reduction in energy

of the memory system (on- and o↵-chip memory and register file) and the instruction fetch

of up to 38%. These reductions in energy come from relatively simple modifications to the

basic parallel architecture with negligible overhead. They also have almost no impact on

the frames per second performance, and actually increase the performance slightly in some

cases. Although the functional unit energy has not changed, the significant reductions in

energy used in the various memory systems, combined with low hardware overhead, implies

that these techniques would be welcome additions to any hardware architecture targeting

ray-tracing.

These results are promising, but turn out to be somewhat optimistic. We will see in

Chapter 4 how the simple model for memory used in the TRaX simulator is masking some

important behavior with respect to o↵-chip DRAM. We will rectify this simplification in

Chapter 4, and show how to exploit more detailed knowledge of DRAM circuits in Chapter 5.

With a more accurate DRAMmodel, the total energy savings is slightly less, which reinforces

the importance of accurate memory simulations.



CHAPTER 4

DRAM

DRAM can be the primary consumer of energy in a graphics system, as well as the

main performance bottleneck. Due to the massive size of geometry and materials in typical

scenes, accessing DRAM is unavoidable. In Chapter 3, we discussed various techniques

to reduce the number and frequency of DRAM accesses, primarily by increasing cache hit

rates. While it is certainly true that reducing the number of DRAM accesses can be an

e↵ective means of reducing energy consumption and easing the bottleneck, a detailed look at

the structure of DRAM circuits reveals that changing the data access patterns is an equally

or more e↵ective means of reducing energy costs. This is true even in cases where the raw

data consumption increases over the baseline system. Furthermore, utilizing the maximum

bandwidth capabilities of a DRAM system is essentially impossible for typical unmanaged

access patterns. The more carefully we control DRAM access patterns, the more e↵ectively

we can utilize its capabilities.

The simulations performed in Section 3.2, and in many other works of architecture

exploration, use a simplistic model for accessing DRAM. In the TRaX simulator, a DRAM

access was assumed to have a fixed average latency and energy consumption. This can

drastically misrepresent both time and energy consumption. The maximum bandwidth

was näıvely limited by only allowing a certain number of accesses per cycle, ignoring

access patterns and queueing. This would allow for any access pattern to achieve the

maximum capable bandwidth, and would not bu↵er requests to accommodate bursts and

calm periods. A simple DRAM model such as this may be su�cient for general-purpose

or non-memory-bound application simulation, but if we are truly concerned with memory

activity and wish to take advantage of DRAM characteristics, we must model the subtleties

of its behavior. Modeling DRAM correctly is nontrivial, and can have very important

implications on results.
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4.1 DRAM Behavior
DRAM is built with a fundamentally di↵erent mechanism than SRAM. SRAMs are

optimized for speed and fabricated directly on the processor die, while DRAMs are optimized

for data capacity, using a di↵erent fabrication process, and are typically o↵ the main

processor chip. DRAM uses a single capacitor for storage, and a single access transistor

per bit. These bits are arranged in a dense 2D array structure sometimes called a “matrix”

or “mat.” The access transistors are controlled by a “wordline,” and their outputs (the bit

stored in the capacitor) are connected to the “bitline” (Figure 4.1).

Reading data from the cells is a complex and costly operation [46] involving:

• Activating the wordline - this connects the capacitor to the bitline so that its

charge alters the voltage on the bitline.

• Sense amplifiers - since DRAMs are optimized for density, the capacitance of each

bit is very small, unfortunately much smaller than the capacitance of the bit line [72].

To determine the value of the bit, special circuitry is required to detect the minute

change in voltage created by such a small charge.

• Precharge - in order to detect the value of the bit, the sense amplifiers require that

the bitline rests at a certain specific voltage before connecting it to the cell’s capacitor.

S.A.

Wordline

S.A. S.A. S.A.

Wordline

Bi
tli

ne

Bi
tli

ne

Bi
tli

ne

Bi
tli

ne

Access
Transistor

Cell 
Capacitor

Figure 4.1: A small portion of a DRAM mat. A row is read by activating its corresponding
wordline, feeding the appropriate bits into the sense amplifiers (S.A.). In this case, the four
sense amplifiers shown, using internal feedback, make up a small row bu↵er.
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Since reading the cell changes the voltage on the bitline, it must be reset (precharged)

before every access.

• Charge pumps - the access transistor of a DRAM cell is an n-type metal-oxide-

semiconductor (nMOS) transistor. Thus, reading a 1 value out of the capacitor will

result in a lower than desirable voltage change on the bitline. Charge pumps are

additional capacitors used to overdrive the voltage on the wordline, allowing the

transistor to pass a strong 1. Charge pump capacitors must be recharged before

another read can occur on that wordline.

• Writeback - since reading a cell requires connecting its capacitor to the bitline, and

thus altering its stored charge, the read process is destructive (the data are lost).

The data are temporarily saved in auxiliary storage, but must be rewritten before the

auxiliary storage is needed for saving other temporary data reads.

4.1.1 Row Bu↵er

Each of the above operations consumes energy and potentially takes considerable time.

If the full process were required for every DRAM request, the cost would be very high. When

the processor needs data from DRAM, it requests a single cache line at a time. Although

typically larger than a single machine word, cache lines are still relatively small (64 bytes)

compared to the working set of data. In reality, DRAM reads many bits in parallel (many

more than a cache line). This massive overfetch is an attempt to amortize the significant

read overheads across many requests. The overfetched data are stored in the previously

mentioned auxiliary temporary storage, called the row bu↵er. The row bu↵er is made up

of the sense amplifiers, and resides on the same memory chip. Data in the row bu↵er are

called the “open row,” and if the address of a subsequent request happens to lie within the

open row, the data are returned straight from the sense amplifiers. This is called a row

bu↵er hit, and is significantly faster and less energy consumptive than opening a new row.

Data in the row bu↵er will reside there until a DRAM request requires data from a di↵erent

row. Since there is only one row bu↵er (per bank, see Section 4.1.2), the residing row must

be evicted (closed) to make room for the new one.

4.1.2 DRAM Organization

DRAM chips consist of multiple mats, which are then tiled on a multichip dual inline

memory module (DIMM), and a full DRAM system consists of potentially multiple DIMMs.

The data in such a system are organized into separate logical regions based on the type,
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layout, and number of chips and DIMMs. These regions can be identified by name in the

address bits as follows:

• Channel - each DIMM belongs to one channel. A channel has physical wire connec-

tions to the processor, and all channels can transfer data simultaneously.

• Rank - each DIMM has one or more ranks. A rank is the set of chips on the DIMM

that are activated in parallel to perform a single row read. Individual physical row

bu↵ers on each chip in the rank are combined to make a full logical row (typically

4KB or 8KB total). Common DIMMs have one or two ranks.

• Bank - each rank consists of multiple banks. A bank is the set of rows within a rank

that map to one row bu↵er. There can be one open row per bank.

• Row - each bank consists of multiple rows. One row at a time can be contained in

the bank’s row bu↵er.

• Column - each row consists of multiple columns. The column bits in the address

identify a single cache line; this is the unit of data transferred to the processor for a

single request.

The address of a request is broken up to determine which channel, rank, bank, row, and

column the data are stored in. Although only one cache line can be in transit per channel at

any given time, the process of preparing a cache line for transfer can happen independently

and simultaneously in multiple banks, to some extent (Figure 4.2). Depending on the access

patterns of consecutive requests, many DRAM read operations may be in flight at once,

hiding the large latency of opening a row, and allowing the channels to transfer data at

high capacity.

Access patterns can vary widely depending on the application domain. While some

applications will naturally produce good patterns, it is almost impossible to utilize the

peak bandwidth capabilities of the memory channels without specifically regulating DRAM

requests. In the worst case, an access pattern will read only a single column before requiring

a new row. The memory controller (Section 4.2) can attempt to increase row bu↵er hit rates

by enqueueing and delaying reads, then preferentially scheduling them to open rows, but

there is a limit to its e↵ectiveness with overly chaotic access patterns such as those found in

ray-tracing. DRAM performance ultimately depends on the row bu↵er hit rate, i.e., reading

as much data out of an open row as possible before closing it. We discuss a technique to

help achieve this in Chapter 5.
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Figure 4.2: Simple DRAM access timing examples showing the processing of two simul-
taneous read requests (load A and B).
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4.2 DRAM Timing and the Memory Controller
The operations for reading a row of data discussed in Section 4.1 are, to some degree,

individually controlled operations. There is no single “read” or “write” command that

the processor can send to the DRAM devices. Each command requires a certain known

amount of time, and the DRAM devices must obey timing constraints when performing

certain sequences of those operations. For example, they should not attempt to perform a

precharge command while still in the process of opening a row. Thus, in order to interface

with DRAM, the processor must keep track of the state of the devices at all times, and

issue commands in a meaningful order and at valid times. Figure 4.2 shows some simplified

examples of the steps taken to process two bu↵ered requests for data (addresses A and B),

and the basic timing constraints for those steps. The four scenarios shown vary based on

the addresses of the requests. For simplicity, we show just one rank, and two channels,

banks, rows, and columns. Figure 4.2 (a) shows two accesses to the same row, (b): two

accesses to separate channels, (c): di↵erent banks within the same channel, and (d): two

separate rows within the same bank. The timing constraints [18] are abbreviated as follows:

• tRCD - Row to Column Delay: the time between activating the row and data reaching

the sense amplifiers.

• tCCD - Column to Column Delay: the delay required between reading two columns

from the row, limited by the rate at which the channel can transfer a column of data.

• tCAS - Column Access Strobe: the delay between accessing a column of the open

row and the start of transferring the data across the channel.

• tRAS - Row Access Strobe: the delay between opening a row and the completion of

writeback.

• tRRD - Row to Row Delay: the delay between activating rows in separate banks.

• tRC - Row Cycle: the delay between activating separate rows within the same bank.

Most processors dedicate considerable circuitry to the task of tracking the state of DRAM,

and when and how to issue the necessary commands. This circuitry is called the memory

controller.

The memory controller can also make intelligent decisions about the order in which

memory requests are processed. They can bu↵er multiple pending requests in an e↵ort to

process them in a more e�cient order, as well as to accommodate bursts of requests that
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arrive faster than serviceable. For example, if several requests reside in the bu↵er, some of

them in one row, and some of them in another, the memory controller may service all of

the requests to one row first, regardless of the order in which they arrived.

4.3 Accurate DRAM Modeling
TRaX’s näıve DRAM assumptions would not capture any of the important behavior

discussed above, and may cause egregious errors in the results. The mechanisms and

constraints of DRAM can clearly have an e↵ect on performance. If we are to truly study

the e↵ect of streaming data techniques on arguably the most important component of the

memory hierarchy, we must model the cycle-to-cycle memory controller and DRAM chip

state, and expose the following phenomena in a simulator:

• Opening/closing rows, row bu↵er hits vs. misses - These can result in drastic

di↵erences in energy and delay.

• Scheduling - Reads can be serviced out of order, which results in opportunities for

increasing row hits. This also a↵ects on-chip cache performance.

• Write drain mode - Draining the write queue disables reads for a long period of

time, introducing hiccups in DRAM access timing.

• Refresh - Memory cells must be rewritten periodically or they lose data. This disables

large sections of memory for a long period of time, introducing hiccups and consuming

a large amount of energy.

• Separate memory clock - A memory controller can make decisions in-between or

slower than GPU/CPU cycles.

• Address mapping policy - The way in which addresses are mapped to chan-

nels/banks/rows has a direct impact on how e�ciently the data is accessed.

• Background energy - DRAM energy is not only a function of the number and

pattern of accesses, but also of running time.

USIMM (Utah Simulated Memory Module) is a DRAM simulator with sophisticated

modeling of timing and energy characteristics for the entire DRAM system [18], and has

been used by a number of simulation systems as an accurate memory model [62, 66]. In

this work, we incorporate USIMM into the TRaX simulator, and adapt it to operate with

on-the-fly DRAM requests as they are generated, as opposed to operating on trace files.
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The result is a fully cycle accurate GPU system simulator with USIMM dynamically serving

at the top of the memory hierarchy. We use this to further explore the problem of data

movement in ray-tracing with a focus on the very important DRAM interface in Chapter 5.



CHAPTER 5

STREAMING THROUGH DRAM

A fair amount of recent work, including our own (see Chapter 3), aims to reduce o↵-chip

data consumption, since DRAM can be the main performance bottleneck in a ray tracer and

is a very large energy consumer (Figure 1.1, Table 3.1). Raw data consumption, however,

does not tell the full story, since the internal structure of DRAM yields highly variable

energy and latency characteristics depending on access patterns. A benchmark with a

higher number of total accesses but a friendlier access pattern may outperform another

benchmark that consumes less raw data. Essentially, DRAM e�ciency comes down to row

bu↵er hit rate: the higher the better.

As discussed in Chapter 4, the memory controller can attempt to increase the row bu↵er

hit rate given whatever accesses the application generates, but with limited e↵ectiveness.

If the application consciously orders its data accesses to address the nature of DRAM,

the memory controller can be vastly more successful in finding row bu↵er hits. STRaTA

(Section 3.2) reorders memory accesses with the goal of increasing cache hit rates, but this

also reveals a fortuitous opportunity when considering the complexities of DRAM.

To understand the key di↵erence in DRAM access patterns between the baseline path

tracer and STRaTA, we must examine the algorithmic source of the accesses. The baseline’s

memory access pattern is determined by the nature of the BVH traversal algorithm. Since

no special care is taken to govern memory access patterns, the result is chaotic accesses

when global illumination inevitably generates many incoherent rays. Accesses that miss in

the L1 and L2 are thus both temporally and spatially incoherent, generating continuous

moderate pressure on all channels, banks, and rows in DRAM.

STRaTA remaps the ray-tracing algorithm to specifically target coherent L1 accesses.

While a TM is operating on a certain treelet, all accesses will hit in the L1, except for the

first to any given cache line. Ideally a TM will operate on the treelet for a prolonged period

of time, generating no L2 or DRAM accesses. The accesses that do make it past the L1 occur

right after a TM has switched to a new treelet; all threads within a TM will immediately
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begin reading cache lines for the new treelet, missing in the L1, and generating a very large

burst of L2/DRAM accesses. While the small L2 cache in STRaTA may absorb some of

this burst, the remainder that makes it to DRAM will have the same bursty structure, but

will be no larger than the size of a treelet.

The optimal size of STRaTA’s treelets was determined experimentally to be as close to

the capacity of the L1 cache as possible [50], which is 16KB. We can thus guarantee that

the burst to load a treelet from DRAM is no larger than 16KB, however, depending on the

BVH builder and treelet assignment algorithm, a treelet’s data may be scattered arbitrarily

throughout memory. The only requirements of STRaTA’s (and most ray tracers’) BVH

layout is that siblings reside next to each other in memory; we can rearrange the data at

will so long as this restriction is met. We thus modify the BVH builder so that all nodes

belonging to one treelet are stored in a consecutive address block. The result is that the

large DRAM burst to load a treelet maps directly to just two rows (Figure 5.1).

Since the burst takes place over a short period of time, the memory controller’s read

queues will fill with an abundance of same-row requests, making it trivial to schedule reads

for row bu↵er hits. The memory controller’s address mapping policy places consecutive

cache lines (columns) in the same row, and strides consecutive rows across the memory

channels (Figure 5.1). This allows for the two rows making up a treelet to be transferred

simultaneously from two separate channels (Figure 4.2(b)). We call this new modified

version “STRaTA+.”

Row 0 

Row 2 
Row 4 
Row 6 

… 

Row 1 

Row 3 
Row 5 
Row 7 

… 

Channel 0  Channel 1

DRAM

Figure 5.1: Treelets are arranged in contiguous data blocks targeted as a multiple of the
DRAM row size. In this example treelets are constructed to be the size of two DRAM rows.
Primitives are stored in a separate type of “treelet” di↵erentiated from node treelets, and
subject to the same DRAM row sizes.
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5.1 Analysis
We start with the baseline TRaX system discussed in Section 3.2.4, based on previous

performance/area explorations [52] (see Section 2.2), with 128 TMs, which results in

4K total thread processors. To model near-future GPU DRAM capabilities, we configure

USIMM for both the baseline and STRaTA+ to use GDDR5 with eight 64-bit channels,

running at 2GHz (8GHz e↵ective), for a total of 512GB/s maximum bandwidth. The GPU

core configurations use a 1GHz clock rate.

We update the experiments performed in Section 3.2 with the improved DRAM simulator

and with the new row-friendly data ordering for STRaTA+. We also include many more

benchmark scenes (Figure 3.5). Since the mix of geometric complexity and data footprints

can have a large impact on a ray tracer’s performance, it is imperative to test a wide range

of scenes [3]. The scenes used include: architectural models (Sibenik, Crytek, Conference,

Sodahall, San Miguel), scanned models (Buddha, Dragon), and nature/game models (Fairy,

Vegetation, Hairball). The laser scan models are unlikely to be used alone in empty space

in a real situation such as a movie or game, so we also include versions of them enclosed in

a box, allowing rays to bounce around the environment.

Because STRaTA stores rays in on-chip bu↵ers with finite capacity, rays must be gen-

erated and consumed in a one-to-one ratio (Section 3.2.1). This limits our test renderer to

shading with nonbranching ray paths. To support more advanced shaders, the programmer

could add more information to the per-ray state to determine the remaining rays yet to

be generated. When one shading ray finishes, a new ray could be generated with updated

state for the associated shading point. Increasing the data footprint of rays will reduce the

number of them that fit in the stream memory, but our results indicate that the number

of rays in flight could decrease by a fair amount without being detrimental to the system.

Another option is to allow the on-chip ray bu↵ers to overflow to main memory when full

(for example Aila et al. store rays in main memory [2]), but this would require carefully

regulating when and where the data is uploaded to DRAM in order to maintain the theme

of intelligent access patterns. Since we do not focus on shading in this work, we leave this

as a future exercise, discussed in Section 7.1.

5.2 Results
Table 5.1 shows a breakdown of various DRAM characteristics on each scene, as well

as total running time in ms/frame, for the baseline and STRaTA+ techniques. Note

that although STRaTA+ increases L1 hit rates, the lack of a large L2 cache can result in a

greater number of total DRAM accesses and thus increased bandwidth consumption on some
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Table 5.1: DRAM performance characteristics for baseline vs. STRaTA+, where bold
signifies the better performer. Read latency is given in units of GPU clock cycles. STRaTA+
DRAM energy is also shown as a percentage of baseline DRAM energy. For all columns
except Row Bu↵er (RB) Hit Rate, lower is better.

Baseline STRaTA+

Scene

Accesses
(M)

RB
Hit Rate

(%)

Avg.
Latency

ms /
Frame

Energy
(J)

Accesses
(M)

RB
Hit Rate

(%)

Avg.
Latency

ms /
Frame

Energy
(J)

Sibenik 39 69 39 21 1.7 15 84 31 23 0.98 (58%)

Fairy 22 62 49 12 1.1 14 83 45 16 0.77 (70%)

Crytek 59 44 60 31 3.5 52 84 35 34 2.0 (57%)

Conference 18 57 42 17 1.1 9 83 35 23 0.84 (76%)

Dragon 70 55 264 22 3.2 78 80 63 25 2.5 (78%)

Dragon Box 168 35 429 71 10.1 252 80 65 57 7.3 (72%)

Buddha 47 63 219 13 1.9 86 77 83 23 2.7 (142%)

Buddha Box 133 31 416 61 8.6 224 78 63 54 6.8 (79%)

Vegetation 148 43 346 56 8.2 160 77 53 51 5.4 (66%)

Sodahall 5 64 41 8 0.4 4.5 72 69 9 0.4 (100%)

Hairball 135 48 352 46 6.9 126 75 62 40 4.3 (62%)

San Miguel 218 27 352 108 14.8 323 60 169 94 13.7 (93%)

scenes. However, the coherent pattern of accesses generated by STRaTA+ increases the row

bu↵er hit rate significantly on all scenes, and drastically on some (San Miguel, Buddha Box,

Dragon Box). Raw bandwidth consumption, while an interesting metric, does not reveal

other subtleties of DRAM access; the increase in row bu↵er hit rate reduces DRAM energy

consumed on all but two outlier scenes (Buddha increases by 42% and Sodahall is tied),

discussed further below.

As a secondary e↵ect, increased row bu↵er hit rate can also lead to greatly reduced read

latency, up to 85% on the Dragon Box scene. This can result in higher performance, even

though STRaTA+ introduces some overhead in the traversal phase due to its lack of a full

traversal stack (Section 3.2.2) and the need to detect treelet boundaries.

There are two notable outlier scenes: Buddha and Sodahall. Buddha is the only scene

in which STRaTA+ consumes more DRAM energy than the baseline. The major reason

for this is that Buddha requires the fewest total rays to render. The Buddha is the only

object in the scene, so over half of the primary rays immediately hit the background and

do not generate secondary bounces. The few rays that do hit the Buddha surface are likely

to bounce in a direction that will also terminate in the background. Because of this, a

disproportionate number of rays never leave the top level (root) treelet, and Buddha does
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not reach a critical mass of rays required for our ray bu↵ers to function e↵ectively. Hence,

we also consider a more realistic scene by placing Buddha in a box.

When a TM switches to a treelet ray bu↵er, if there are not enough rays to keep all of its

threads busy, many of the compute resources sit idle, e↵ectively reducing parallelism. Even

though STRaTA+ increases row bu↵er hit rates on Buddha, the increase in DRAM energy is

partly background energy caused by the nearly doubled running time while threads sit idle.

We note that DRAM energy is not only a function of the number and pattern of accesses, but

it also has a dependency on the total running time (e.g. ms/frame in Table 5.1), mostly

due to the need for continuous refreshing of the DRAM data even when no read/write

activity occurs, and because we use an open row memory controller policy [83] that keeps

rows open (consuming energy) for as long as possible in order to improve row bu↵er hit

rate.

Also note that the baseline has a relatively high row bu↵er hit rate on Buddha, so

STRaTA+ is unable to make as large of a di↵erence. The Dragon scene is similar to

Buddha, but does not exhibit this problem. The baseline takes almost twice as long to

render Dragon than Buddha, since Dragon fills a larger portion of the frame. This closes

the gap in background energy between the two techniques. Dragon also results in more

total rays, and has a smaller data footprint with fewer total treelets, and thus more rays on

average in each bu↵er.

The other interesting outlier is Sodahall. Even though it has a large data footprint (2.2M

triangles), it generates by far the fewest DRAM accesses. Most of the geometry is not visible

from any one viewing angle, since it is separated into many individual rooms. The BVH

does its job well, so only a small percentage of the total data is ever accessed. The pressure

on DRAM is so low that background energy is the dominant factor for both STRaTA+ and

the baseline. The viewpoint shown (Figure 3.5) has similar results to viewpoints inside the

building.

In addition to reducing energy consumption, STRaTA+ can also increase performance

scalability with the number of cores. Figure 5.2 shows performance for STRaTA+ with

increasing numbers of TMs (dotted lines), compared to the baseline (solid lines) for a subset

of benchmark scenes, and includes accurate DRAM modeling, unlike Figure 3.6. Since

DRAM is the bottleneck in both cases, this data becomes much more revealing. Memory

becomes a bottleneck much more quickly for the baseline than for STRaTA+, which is able

to utilize more cores to achieve significantly higher performance. In fact, we were unable to

find the plateau point for STRaTA+ for some scenes due to limited simulation time.
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Figure 5.2: Performance on a selection of benchmark scenes with varying number of TMs.
Each TM has 32 cores. Performance plateaus due to DRAM over-utilization.

5.3 Conclusions
By deferring ray computations through streaming rays and by reordering the treelet

data for DRAM awareness, we can greatly increase cache hit rates and improve the o↵-chip

memory access patterns, resulting in row bu↵er hit rates increasing from 35% to 80% in the

best case, DRAM energy up to 43% lower, and DRAM read latencies up to 85% faster.

More generally, we show that understanding DRAM circuits is critical to making evalu-

ations of energy and performance in memory-dominated systems. DRAM access protocols,

and the resulting energy profiles, are complex and subtle. We show that managing DRAM

access patterns (e.g. to optimize row bu↵er hit rates) can have a significantly greater

impact on energy than simply reducing overall DRAM bandwidth consumption. These

e↵ects require a high-fidelity DRAM simulation, such as USIMM, that includes internal

DRAM access modeling, and detailed modeling of the memory controller. The interaction

between compute architectures and DRAM to reduce energy is an underexplored area, and

we plan to continue to explore how applications like ray-tracing interact with the memory

system. Especially interesting is the DRAM subsystem, because it is the primary consumer

of energy in a memory-constrained application such as ray-tracing. In particular, one might

develop a memory controller scheduler that is ray-tracing aware, and hide DRAM access

optimizations from the programmer.



CHAPTER 6

TOOLS AND IMPLEMENTATION

DETAILS

The primary tool used in this work is the simtrax architectural simulator and com-

piler [38]. As described in Spjut’s dissertation [92], simtrax users compile their C/C++

programs with our custom compiler backend, generating a TRaX assembly file that the

simulator executes while tracking execution statistics cycle-by-cycle. In this work, we have

made substantial upgrades to the various systems that make up simtrax.

Assembler

Originally, the simtrax assembler was designed to assist with hand-written assembly

programs. These hand-written programs simply consisted of a sequence of instructions

and labels, register renaming declarations, and comments, so the assembler did not

need support for more advanced directives such as symbol arithmetic expressions [25],

or even a data segment. Once a compiler was introduced using llvm [19], the assembly

became far more complicated, and the assembler only supported a limited subset

of valid assembly files, restricting the supported C++ language features. In this

work, we substantially upgrade the assembler to support the full format used by the

compiler. This enables full C/C++ features that were previously forbidden by the

TRaX programming guidelines such as:

• Inheritance

• Templates

• Switch statements

• Globally-scoped objects
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ISA

The TRaX ISA was originally a fully custom simple RISC architecture. With the

maturing of llvm, it became possible to create our own compiler backend and grow

past writing assembly by hand. Rather than create a full backend, we merged the

core TRaX characteristics with an ISA called Microblaze [107], since it is quite

similar to the original TRaX design and was supported by an existing llvm backend.

Unfortunately, the Microblaze backend support was dropped, and was quite buggy to

begin with. For this work, we upgraded the ISA yet again to MIPS [40]. The MIPS

llvm backend is vastly more robust and optimized, producing code up to 15% faster

than Microblaze.

MSA

Imagination Technologies added SIMD extensions to the MIPS ISA called MSA [41].

We include support for these extensions in simtrax. MSA is a set of 4-wide vector

instructions similar to SSE, and supporting it in the simulator allows for further

investigation of competing or novel energy or performance improvement techniques.

Particularly, packetized ray tracers very similar to those discussed in Section 2.1.2.1

can be implemented for comparison.

Profiler

As part of the assembler upgrades mentioned previously, we provide support for the

DWARF debugging information specification [25]. With debug symbols embedded in

the assembly, the simulator can extract information about the source code associated

with every instruction it executes. With this, we add a performance profiler to simtrax.

Since the simulator has perfect execution information, the resulting profile is fully

accurate, as opposed to most profilers, which rely on sampling techniques. An example

of the profiler’s output is shown in Figure 6.1.

Debugging

With the addition of debug symbols, the simulator can report far more useful in-

formation when the program it is executing crashes. Previously, if the program

accessed an invalid memory address, for example, the simulator could only report

which instruction attempted the bad access. Without source information, it can be

very di�cult to determine which portion of the source code is responsible for that

instruction. With debug symbols, the simulator can report a much more helpful error
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main 100.00

| trax_main 100.00

| | shadeLambert 49.00

| | | BoundingVolumeHierarchy::intersect 44.92

| | | | Box::intersect 29.95

| | | | | Vector::vecMax 5.94

| | | | | Vector::operator* 5.48

| | | | | Vector::operator* 5.18

| | | | | Vector::vecMin 5.05

| | | | | Vector::operator- 0.63

| | | | | Vector::operator- 0.62

| | | | | HitRecord::hit 0.30

| | | | | HitRecord::hit 0.16

| | | | Tri::intersect 7.15

| | | | | Cross 2.49

| | | | | Dot 1.14

| | | | | Dot 1.13

| | | | | Cross 0.65

| | | | | Dot 0.33

| | | | | Dot 0.17

...

Figure 6.1: Example simtrax profiler output running a basic path tracer. Numbers beside
function names represent percentage of total execution time.

message, indicating which file and line the program crashed on. As future work, it

would not be unreasonable to implement a full runtime debugger within the simulator,

given that debug symbols are already fully extracted by the profiler.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

There are many avenues to explore in continuation of this work. Alternative methods

of extracting data access coherence, aside from treelets, may prove beneficial. Acceleration

structures not based on trees, such as regular grids, are intriguing because they are traversed

in a deterministic order, allowing for the possibility of prefetching a stream of scene data

without any decision making or complicated scheduling involved. This linear prefetched scan

of the data could simply be repeated for each scan direction through the grid, performed

on all rays traversing in that direction.

As discussed in Section 2.1.4, Keely uses reduced precision arithmetic to greatly simplify

and speed up a BVH traversal pipeline. This should be applicable to almost any ray-tracing

system, including STRaTA. As opposed to reconfiguring existing full precision execution

units, STRaTA could use a smaller mix of general purpose XUs, for shading and other logic,

and employ fixed-function traversal logic, since the circuitry is so small [48]. This would

require reexamining the right mix of memory and compute resources to feed the compute,

particularly since STRaTA uses a mixture that was mostly adapted from an existing baseline

ray-tracing design.

Perhaps the largest avenue for improvement is to support more generalized shading. In

Section 5.1, we discussed STRaTA’s limited shading capabilities. In the design of STRaTA,

we were more concerned with traversal and intersection, since they have historically been the

bottleneck in ray-tracing systems. Because of this, the ray-tracing benchmarks performed on

STRaTA and the underlying TRaX architecture use relatively simple shading: Lambertian

materials only, rendered with either primary visibility with hard shadows, or Kajiya-style

path tracing [47]. Lambertian shading consists of a very simple calculation relative to

traversing a ray through the full acceleration structure, and in the case of path tracing,

also includes calculating the direction of the next global illumination reflected ray (a näıve

bidirectional reflectance distribution function (BRDF)). For the simple ray tracers executed
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on TRaX and STRaTA, we attribute only about 8% of total frame time to the shading phase

of the algorithm [16].

7.1 Shading in STRaTA
Perhaps due to the large body of work greatly improving traversal and intersection,

shading has recently come more under the spotlight [54, 29]. To be widely adopted, a system

like STRaTA must support fully programmable shaders to enable more types of physical,

as well as artistic materials. There are three problems a more advanced shader may present

for STRaTA, which are either avoided or minimized by Lambertian path tracing:

1. Ray Bu↵er Overflow: rays are not always generated and consumed in a one-to-one

ratio. Advanced shaders can create branching ray trees.

2. Shaders may require intensive computation or data fetch, warranting their own stream

bu↵ers and phase-specific pipelines.

3. Any state necessary to shade a ray must be saved with the ray.

7.1.1 Ray Bu↵er Overflow

For Lambertian materials, a Kajiya path tracer casts at most two rays per shade point:

one shadow ray, selected randomly among the light sources, and one global illumination

ray which recursively continues the shading process. Since the shadow ray doesn’t create

any further secondary rays, it is not considered a branch in the ray tree. More advanced

shaders may not have this guarantee.

Consider the pseudocode for a glass material shader in Figure 7.1. This shader creates

a branch in the ray tree, where two additional ray paths are required to shade a hit

point (reflection ray and transmission ray). Those rays can potentially hit materials with

branching shaders as well, and are not guaranteed to terminate like shadow rays, causing the

ray tree to explode. Although this glass material has only a branching factor of two, other

materials may generate an arbitrary number of branched rays. This presents a problem

in STRaTA because the bu↵ers that hold rays have no mechanism for handling overflow.

The bu↵er is initially filled to capacity, and only when a ray finishes traversal (and is thus

removed from the bu↵er), can the shader generate a single new ray to replace it. If the

shader were to generate more than one ray at a time, the bu↵er would overflow.

STRaTA’s Lambertian shader currently handles this by first generating the shadow

ray for a given shade point, and marking this ray with a single bit of state indicating
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1. //Fresnel-Schlick approximation

2. //F_r = Coefficient of reflected energy

3. //F_t = Coefficient of transmitted energy

4.

5. scene->intersect(reflectionRay)

6. scene->intersect(transmissionRay)

7.

8. result = shade(reflectionHit) * F_r

9. + shade(transmissionHit) * F_t

Figure 7.1: Pseudocode for part of a glass material shader.

it is a shadow ray. When the shadow ray completes traversal, the shader is invoked

again, recognizing it as a shadow ray, and generates the global illumination bounce ray

for the original hit point with the appropriate state set. This works for simple Lambertian

materials, since shadow rays are always the terminus of their path through the ray tree. It

would not work when more advanced shaders require storing state for multiple ray subtrees

simultaneously, as in the glass material (Figure 7.1 lines 8 - 9).

The simplest way to handle ray overflow is to write any excess rays to DRAM imme-

diately as they are generated, but this would not align with STRaTA’s goal of carefully

controlling memory access patterns. Alternatively, the on-chip ray bu↵er could be aug-

mented with a hardware sentinel routine that monitors its capacity, waiting for a high

watermark. When the watermark is reached, the sentinel initiates a direct memory access

(DMA) block transfer of many rays at once. These rays can be placed contiguously into

one or more DRAM rows, making the write to DRAM, as well as the eventual read back,

very e�cient. The optimal size of the block transfer can be experimentally determined, and

would likely be a multiple of the row bu↵er size.

As mentioned, rays will eventually need to be transferred back from DRAM to the

on-chip bu↵er. The sentinel routine will also watch for a low watermark when the bu↵er is

almost empty, and begin a DMA block read of rays. The proposed hardware sentinel hides

ray spilling from the programmer, keeps the API simple, and prevents the compute cores

from being unnecessarily involved in the transfers.

When the sentinel routine dumps to DRAM, this would necessarily stall any thread that

needs to write rays to the bu↵er, introducing potentially long hiccups and energy bursts. To

roughly analyze the e↵ect of this, we execute a simple TRaX program that reads (or writes)

a large block of data to consecutive addresses, using the appropriate number of threads to
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simulate the reported bandwidth of 48GB/s of STRaTA’s ray bu↵er memory [51]. This

is the theoretical upper bound on the transfer rate between the ray bu↵er and DRAM,

primarily limited by the need to update list pointers as the contents change. Under this

access pattern, USIMM [18] reports an average row bu↵er hit rate of 99%, as expected, and

bandwidth utilization of 47.5GB/s, very close to the target. We believe this represents a

reasonable simulation of the conditions which a block transfer by the sentinel could achieve,

and we can use this to estimate the impact on power draw and performance of the proposed

modifications to the STRaTA system. Table 7.1 summarizes these results.

It is impossible to predict the mix of shaders used by any particular scene or ray tracer,

so we cannot know how often the bu↵er will overflow or underflow without performing full

tests. To more carefully control the possibility of rays thrashing in and out of DRAM,

STRaTA’s scheduler could preferentially select rays to shade based on a known shader

branching factor provided by the API. This would also require augmenting the design to

bu↵er rays at shader points, not just treelet boundaries. This would enable the scheduler to

generate and consume rays purely on-chip for a longer period of time, similar to Imagination

Technologies’ PowerVR ray-tracing API [59].

7.1.2 Shading Pipelines and Streams

The original STRaTA design uses simple shading, which is handled by the leftover

general purpose execution units after being fused into a box or triangle pipeline. The data

footprint required for this simple shading is also unrepresentative of a real scene, including

no textures. We use just a single hard-coded grey material for every triangle in the scene.

As a result, the shading process in STRaTA does not disturb the caches at all. This is

obviously unrealistic.

There are two synergistic advantages that STRaTA enables: fused function pipelines

and cache-friendly data access. Traversal and intersection are naturally able to utilize these

two advantages, but shading presents a separate challenge for each. First we will examine

Table 7.1: Simulated block transfer from the proposed ray bu↵er sentinel to DRAM.
Results are gathered under the same simulated architecture as STRaTA [51]. 2MB
represents half of the ray bu↵er capacity used in [51].

Transferred
Block Size

(MB)

Power
Draw
(W)

Transfer
Rate

(GB/s)

Transfer
Duration
(ms)

Row Bu↵er
Hit Rate

2 34.5 47.5 0.04 99%
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the data coherence advantage. The bulk of data that a shader must access are typically

textures or other data that are treated as a texture, such as bump maps or displacement

maps. Luckily, existing graphics hardware has highly optimized custom texture support,

including texture caches. Although little is known about their implementation, it is unlikely

that any “treelet”-style clustering would improve their data access performance [35]. We

will therefore assume texture data in STRaTA would be handled by such hardware. The

remaining data associated with a shader should be relatively small, including a di↵use,

ambient, and specular color, shader type, texture ID, etc. This data should fit within the

16KB capacity of STRaTA’s L1 cache, requiring no thrashing for any given shader.

The other advantage of STRaTA, fused function pipelines, is made possible by the

bu↵ering of rays based on their category. Currently those categories are one of two: rays

performing box intersection, or rays performing triangle intersection. With a su�cient group

of rays ready to perform one type of action, the shared functional units can reconfigure in

to that pipeline mode. Without a critical mass of rays, reconfiguring the pipelines for just

one or two rays at a time would have very high overhead. In order to enable pipelines

for shading, one might consider creating new categories of ray bu↵ers, one for each shader

type, e.g., Lambertian, glass, cloth, etc. After a ray has passed through the traversal and

intersection phases, it could be placed in a new bu↵er for the corresponding material shader

that was hit, and the scheduler will eventually select a thread multiprocessor (TM) to shade

those rays.

Unlike traversal and intersection, the requirements for shading are very unpredictable,

and can vary drastically from scene to scene. In fact, it is impossible to predict what any

given shader may do, such as for one particular special e↵ect for a movie [29]. Shaders are

by nature programmable, but there are common themes throughout most shaders, such as

a high occurrence of 3D vector operations including normalization, reciprocal, addition and

subtraction, multiplication by a scalar, dot product, cross product, and many others. For

example a Lambertian, glass, and metal shader all use dot product, and many of the other

simple operations listed. We could construct full pipelines for the common shaders like

Lambertian, but without prior knowledge of the shaders to be executed, it is impossible to

accommodate them all. For this reason we propose creating functional unit configuration

modes with multiple common operations. Perhaps one mode would consist of two dot

product units and a vector addition/subtraction unit. This would tie up 6 multipliers and

2 adders for the dot products, and 3 adders for the add/sub unit. Under the baseline TRaX

configuration, this would leave 2 multipliers and 3 adders for general purpose use. Table 3.2
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summarizes the potential benefits for a variety of common 3D vector operations. With

the right intelligent mixture of 3D vector operations, along with simpler multiply-add style

fusion, advanced shaders should see significant energy reductions. Di↵erent shaders may

be more amenable to di↵erent mixtures of units. The STRaTA system could o↵er multiple

di↵erent mixtures for di↵erent purposes, avoiding becoming overly shader specific.

7.1.3 Storing Shader State

Since a single ray cast in STRaTA is a non-blocking operation that may be shared by

multiple processors, any state associated with that ray, or any result that it may produce,

must be stored with the ray so it can be later accessed for shading. For example, a pixel ID

must be stored with every ray generated so that when shading is ultimately performed, the

correct pixel value can be set. When path tracing with Lambertian materials only, the extra

shading state that must be stored is quite simple, and consumes 48B in STRaTA [50]. This

takes advantage of many assumptions that are built in to the algorithm, such as knowing

that only one global illumination ray must be cast per shading point, so we don’t need to

keep track of how many more rays must be generated. In contrast, an ambient occlusion

shader may cast many rays per shade point [4], and we would need to store a counter with

each ray so that we know when to stop generating them. In this particular example, the

counter could be fairly small (just a few bits), but in general, we can not make assumptions

about a ray’s required shading state.

Laine et al. discuss wavefront path tracing [54], which has a similar requirement that

rays must be saved in memory instead of in registers, so that they may be passed among

multiple processing kernels. The paper specifically addresses di�culties that arise when

complex shaders are involved, including a 4-layer glossy car paint, noise-based procedural

displacement maps, tinted glass, and di↵use+glossy surfaces. The total state for each ray

path to handle complex shading of this nature is 212B, or 4.4⇥ larger than that required

in STRaTA.

Increasing the size of each ray results in a corresponding reduction in the number of

them that can be stored in on-chip bu↵ers. This reduction could potentially impact the

performance of the STRaTA system, since a certain critical mass of rays is required to

overcome the overheads of treelet processing. Data shows that STRaTA can tolerate a 2⇥

reduction in the number of rays in flight (equivalent to a 2⇥ increase in ray size) with little

impact on the energy advantage over the baseline [51]. Even a 4⇥ reduction in active rays

does not eliminate STRaTA’s energy advantage, and on some scenes it remains high. There
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is a performance penalty in terms of rays/second, ranging between 7% to 31%, depending

on the scene, when the number of active rays is reduced fourfold.

Researchers have proposed hardware compression techniques to e↵ectively increase the

capacity or e�ciency of caches [76], and memory [1, 86], which would likely prove useful

for increasing the number of rays in flight in a STRaTA-like system. Specific context-aware

data organization may also be e↵ective, for example unit vectors need not consume three

full 32-bit words [21]. A combination of ray data compression and intelligent DRAM spilling

should allow STRaTA to handle arbitrary shading.

7.2 Conclusion
Ray-tracing has already become prevalent in o✏ine rendering systems, due to its ease

of use for high quality lighting simulation. We believe as processor technology continues

to advance, if pushed in the right direction, ray-tracing will become prevalent in real-time

systems as well. This dissertation addresses the high costs of data movement in processor

designs, and explores techniques for reducing those costs for ray-tracing in terms of energy

and time. For some applications, rays per second performance is the ultimate goal, so it may

be tempting to overlook energy consumption; however, energy can be the limiting factor

for improvements in processor performance. In the mobile domain, energy consumption is

elevated to a primary concern, where finite battery capacity determines the usefulness of

an energy-hungry application.

We started by designing a baseline platform called TRaX for exploring architectural

innovations for ray-tracing. The baseline is designed for ease of use and programmability

while achieving high performance in a small die-area budget. We then investigated the

data movement in this ray-tracing system, and characterized the associated energy costs.

We employ synergistic techniques that rethink the ray-tracing algorithm to reduce energy

consumption in the instruction fetch, register file, last-level cache, and o↵-chip DRAM

by reordering data accesses and rerouting compute kernel operands, without sacrificing

performance. Next, we closely examined the nature of DRAM and the importance of

modeling its subtle complexities in a simulator, particularly since it can be the performance

bottleneck and largest consumer of energy. We reveal that the way in which DRAM is

accessed can have a bigger impact on a ray-tracing system than the number of accesses.

Finally, we exploit the behavior of DRAM by even further modifying data access patterns

in our streaming ray tracer system. The result is a ray-tracing algorithm/architecture with
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a substantial reduction in energy consumption, and a vast improvement in performance

scalability over basic architectures.

The STRaTA design presented demonstrates two improvements for ray-tracing that can

be applied to throughput-oriented architectures. First, we provide a memory architec-

ture to support smart ray reordering when combined with software that implements BVH

treelets. By deferring ray computations via streaming rays through intelligently blocked

and reordered data, we greatly increase cache hit rates, and improve the o↵-chip memory

access patterns, resulting in row bu↵er hit rates increasing from 35% to 80% in the best

case, DRAM energy up to 43% lower, and DRAM read latencies up to 85% faster. Second,

STRaTA allows shared XUs to be dynamically reconfigured into phase-specific pipelines

to support the dominant computational kernel for a particular treelet type. When these

phase-specific pipelines are active, they reduce instruction fetch and register usage by up

to 28%. If we combine the treelet streaming and phase-specific pipeline enhancements, we

see a total system-wide reduction in energy (including all caches, DRAM, register files, and

compute) of up to 30%.

By understanding and taking advantage of DRAM behavior, we are able to much more

e↵ectively utilize its available bandwidth, reducing or eliminating the primary performance

bottleneck. STRaTA is able to feed many more compute resources with data than a baseline

system, enabling performance to better scale with the number of cores. While the baseline

system’s performance peaks between 120 - 200 cores due to DRAM starvation, STRaTA

continues to improve up to 320 cores and beyond, achieving up to 100% higher performance.
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