
EFFICIENT RAY TRACING ARCHITECTURES

by

Josef Bo Spjut

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2015

Copyright c⃝ Josef Bo Spjut 2015

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Josef Bo Spjut

has been approved by the following supervisory committee members:

Erik Brunvand , Chair Dec 20, 2013

Date Approved

Alan Davis , Member Dec 20, 2013

Date Approved

Rajeev Balasubramonian , Member Dec 20, 2013

Date Approved

Peter Shirley , Member Dec 20, 2013

Date Approved

Ingo Wald , Member Sep 17, 2014

Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

This dissertation presents computer architecture designs that are efficient for ray

tracing based rendering algorithms. The primary observation is that ray tracing maps

better to independent thread issue hardware designs than it does to dependent thread

and data designs used in most commercial architectures. While the independent

thread issue causes extra overhead in the fetch and issue parts of the pipeline, the

number of computation resources required can be reduced through the sharing of

less frequently used execution units. Furthermore, since all the threads run a single

program on multiple data (SPMD), thread processors can share instruction and data

caches. Ray tracing needs read-only access to the scene data during each frame, so

caches can be optimized for reading, and traditional cache coherence protocols are

unnecessary for maintaining coherent memory access. The resultant image exists

as a write only frame buffer, allowing memory writes to avoid the cache entirely,

preventing cache pollution and increasing the performance of smaller caches.

Commercial real-time rendering systems lean heavily on high-performance graph-

ics processing units (GPU) that use the rasterization and z-buffer algorithms for

rendering. A single pass of rasterization throws out much of the global scene infor-

mation by streaming the surface data that a ray tracer keeps resident in memory.

As a result, ray tracing is more naturally able to support rendering effects involving

global information, such as shadows, reflections, refractions and camera lens effects.

Rasterization has a time complexity of approximately O(Nlog(P)) where N is the

number of primitive polygons and P is the number of pixels in the image. Ray

tracing, in contrast, has a time complexity of O(Plog(N)) making ray tracing scale

better to large scenes with many primitive polygons, allowing for increased surface

detail. Finally, once the number of pixels reaches its limit, ray tracing should exceed

the performance of rasterization by allowing the number of objects to increase with

less of a penalty on performance.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . xi

CHAPTERS

1. INTRODUCTION . 1

1.1 Existing Approaches to Graphics Processing . 1
1.2 Raster Graphics . 4
1.3 Ray Tracing . 5

1.3.1 Acceleration Structures . 7
1.3.2 Ray Tracing Optimizations . 8

1.4 Applications and Scenes . 10
1.5 Dissertation . 11

2. A MIMD THROUGHPUT COMPUTE SOLUTION 15

2.1 Parallelism Considerations . 16
2.1.1 Nonparallel Applications . 17
2.1.2 Parallel but Branchy . 18

2.2 The TRaX Architecture . 18
2.2.1 A Thread Processor . 21
2.2.2 A Collection of Threads in a Thread Multiprocessor 23
2.2.3 Top Level Chip . 24
2.2.4 Functional Units . 25

2.3 Example TRaX Architectures . 25
2.4 Conclusion . 26

3. TRAX SIMULATION . 27

3.1 Simulation Configuration . 28
3.2 Simulation Parameters . 29
3.3 Simulation Initialization . 30
3.4 Execution . 32
3.5 End of Simulation . 34
3.6 Example Simulation . 35

4. PROGRAMMING TRAX . 38

4.1 TRaX Helper Functions . 40
4.2 Register Stack . 40
4.3 LLVM Backend . 40
4.4 Functional Simulation . 42
4.5 Example TRaX Programs . 42
4.6 Ray Tracing Software . 45

4.6.1 Shading Methods . 46
4.6.2 Procedural Texturing . 46
4.6.3 Path Tracer Application . 47

5. EVALUATION OF RAY TRACING ON TRAX 50

5.1 Design of a Threaded Multiprocessor . 51
5.1.1 Multi-TM Chip . 52
5.1.2 Whitted-Style Ray Tracer . 53
5.1.3 Design Exploration . 54
5.1.4 Functional Units . 55
5.1.5 Single TM Performance . 56
5.1.6 Secondary Ray Performance . 60

5.2 Overall Chip Design . 64
5.2.1 Architectural Exploration Procedure . 64
5.2.2 Thread Multiprocessor (TM) Design . 66
5.2.3 Exploring Constrained Resource Configurations 68
5.2.4 Results . 74

5.3 Mobile Ray Tracing . 76
5.3.1 Architecture and Methodology . 77
5.3.2 Results . 79
5.3.3 Memory Bandwidth Concerns . 81

5.4 Conclusion . 83

6. RELATED WORK . 85

6.1 High Performance GPU Architectures . 85
6.1.1 NVIDIA Fermi . 87
6.1.2 NVIDIA Kepler . 88
6.1.3 AMD Cypress and Cayman . 88
6.1.4 AMD Graphics Core Next (GCN) . 89

6.2 Low Power Commercial Architectures . 90
6.2.1 Tegra . 91
6.2.2 PowerVR . 91

6.3 General Purpose Architectures . 91
6.3.1 SIMD Extensions to CPUs . 92
6.3.2 Cell Architecture . 93
6.3.3 Larrabee, Intel MIC, and Xeon Phi . 93

6.4 High Performance Research Architectures . 94
6.4.1 StreamRay . 94
6.4.2 Rigel . 94
6.4.3 RPU . 95

v

6.4.4 Copernicus . 95
6.5 Low-Power Ray Tracing Research . 96

6.5.1 ENCORE . 96
6.5.2 MRTP . 96

6.6 Conclusion . 97

7. CONCLUSIONS AND FUTURE WORK . 98

7.1 TRaX-style Programs . 99
7.1.1 SIMD Efficiency in TRaX . 100
7.1.2 TRaX Rasterizer . 101

7.2 Future Work . 102

REFERENCES . 107

vi

LIST OF FIGURES

1.1 The Z-buffer Algorithm . 3

1.2 OpenGL Pipeline . 4

1.3 The Ray Tracing Algorithm . 6

1.4 Example Ray Traced Scenes . 11

1.5 Path Traced Images from Lux [1] at 128 Samples Per Pixel 14

2.1 Test Scenes Used to Evaluate Performance. (a) Conference (b) Sponza
Atrium (c) Sibenik Cathedral (d) Fairy Forest . 19

2.2 Thread Processor Block Diagram . 21

2.3 Potential TM and Multi-TM Chip Floor Plans. (a) TM Layout of 32
TPs and Shared Resources. (b) Chip with Multiple TMs Sharing L2
Caches. 23

3.1 Simulator Overview . 29

3.2 Example Hardware Configuration File . 30

3.3 Example Functional Unit Utilization . 37

4.1 Gradient Fill Example . 43

4.2 Path Tracer Example . 44

4.3 The Cornell Box Scene Showing the Visual Change as the Sampling
Angle Increases in our Path Tracer. Starting on the Left: 0 Degrees, 30
Degrees, 60 Degrees, and 180 Degrees on the Right. 49

5.1 Test Scenes Rendered on Our TRaX Architectural Simulator 53

5.2 Thread Performance (% Issued) . 59

5.3 Single TM Performance as Cache Issue Width is Varied 59

5.4 Test Scenes Used to Evaluate Performance. (a) Conference (b) Sponza
Atrium (c) Sibenik Cathedral (d) Fairy Forest . 65

5.5 L1 Data Cache Performance for a Single TM with Over-Provisioned
Functional Units and Instruction Cache. (a) Issue Rate for Varying
Banks in a 2KB Data Cache. (b) Dcache Hit%, 8-banks and Varying
Capacities. 69

5.6 Effect of Shared Functional Units on Issue Rate Shown as a Percentage
of Total Cycles. (a) FP Add/Sub (13% of Issued Insts). (b) FP Multiply
(13% of Issued Insts). (c) FP Inverse Square Root (0.4% of Issued Insts).
(d) Int Multiply (0.3% of Issued Insts) . 70

5.7 L2 Performance for 16 Banks and TMs with the Top Configuration
Reported in Table 5.9. (a) Hit-rate for Varying L2 Capacities with 20
TMs Connected to Each L2. (b) Percentage of Cycles not Issued Due to
L2 Bank Conflicts for Varying L1 Capacities (and Thus Hitrates) for 20
TMs. (c) L2 Bank Conflicts for a Varying Number of TMs Connected
to Each L2. Each TM Has a 64KB L1 Cache with 95% Hitrate. 72

5.8 Potential TM and Multi-TM Chip Floor Plans. (a) TM Layout of 32
Threads and Shared Resources. (b) Chip with Multiple TMs Sharing
L2 Caches. 73

5.9 A 32-thread TM with Shared Caches and FPUs 78

5.10 Test Scenes Used to Evaluate Mobile Performance. (a) Conference (b)
Crytek Sponza (c) Dragon (d) Fairy Forest . 82

viii

LIST OF TABLES

3.1 Simulation Parameters . 31

3.2 Example Memory Layout . 33

3.3 Example Simulation Configurations . 36

4.1 Helper Functions . 41

5.1 Scene Data with Results for 1 and 16 TMs, Each with 32 Thread
Processors, and Phong Shading Estimated at 500MHz 54

5.2 Default Functional Unit Mix (500MHz Cycles) 55

5.3 Area Estimates (Prelayout) for Functional Units Using Artisan CMOS
Libraries and Synopsys. The 130nm Library is a High Performance Cell
Library and the 65nm is a Low Power Cell Library. Speed is Similar in
Both Libraries. 55

5.4 TRaX Area Estimates to Achieve 30 FPS on Conference. These Esti-
mates Include Multiple TMs, but not the Chip-Wide L2 Cache, Memory
Management, or Other Chip-Wide Units. 58

5.5 Performance Comparison for Conference and Sponza Assuming a Fixed
Chip Area of 150mm2, not Including the L2 Cache, Memory Manage-
ment, and Other Chip-Wide Units. 58

5.6 Performance Comparison for Conference Against Cell and RPU. Com-
parison in Frames Per Second and Million Rays Per Second (MRPS).
All Numbers Are for Shading with Shadows. TRaX and RPU Numbers
are for 1024×768 Images. Cell Numbers are for 1024×1024 Images.
The Cell is Best Compared Using the MRPS Metric Which Factors Out
Image Size. 61

5.7 Results are Reported for the Conference and Sponza Scenes at Two
Different Resolutions with a Different Number of Rays Per Pixel. Path
Traced Images Use a Fixed Ray Depth of Three. TRaX Results Are
for a Single TM with 32 Thread Processors Running at a Simulated
500 MHz. Manta Numbers are Measured Running on a Single TM of
an Intel Core2 Duo at 2.0GHz. Speed Results are Normalized to Path
Tracing with a 10 Degree Cone. 63

5.8 Functional Unit Areas and Performance . 67

5.9 Optimal TM Configurations in Terms of MRPS/mm2. 70

5.10 GTX285 SM vs. MIMD TM Resource Comparison. Area Estimates Are
Normalized to Our Estimated FU Sizes from Table 5.8, and Not From
Actual GTX285 Measurements. 71

5.11 A Selection of Our Top Chip Configurations and Performance Compared
to an NVIDIA GTX285 and Copernicus. 73

5.12 Comparing Our Performance on Two Different Configurations to the
GTX285 for Three Benchmark Scenes [2]. Primary Ray Tests Consisted
of 1 Primary and 1 Shadow Ray Per Pixel. Diffuse Ray Tests Consisted
of 1 Primary and 32 Secondary Global Illumination Rays Per Pixel. . . . 75

5.13 Comparison of Mobile Graphics Accelerator Architectures. All Acceler-
ators Are Scaled to 65nm and 500 MHz Naively for Better Comparison
with Our Configurations. *Tegra 2 Die Size is Estimated from a Die
Photo. 80

5.14 Ray Tracing Performance, Shown in Millions of Rays Per Second. 82

5.15 Performance in Millions of Rays Per Second with the Baseline and In-
creased Memory Bandwidth for the Dragon Scene as Well as an Average
Across All Scenes Tested. 83

7.1 SIMD Performance: Conference Scene . 102

x

ACKNOWLEDGMENTS

I took a long path to get to this point where I was able to complete this disserta-

tion. Obviously, I did not become who am I or complete all of this work on my own,

so I would like to take this chance to acknowledge some of the influences on my life

up to this point.

First, I feel a need to recognize my dad, Erik Spjut, for instilling in me a curiosity

about this world from my youth. When I found a book on programming in elementary

school, he installed a compiler and encouraged me to start programming. He also

was a big part of the reason I ended up at the University of Utah, it being his

undergraduate alma mater. From my childhood, I always had a desire to pursue a

Ph.D. since the man I looked up to most had one.

I also would be negligent to not mention my mother, Karen Spjut, who has

done her best to encourage and support me through all the years. I remember the

many times in my primary and secondary education where she would stay up late

or rise extremely early to provide moral support while I completed my school work.

Unfortunately, I have not yet been able to break this trend, as anyone who worked

on a paper deadline with me can attest to.

When it came time to select a graduate school and advisor, I really did not know

what I was looking for or what would be important for me in completing graduate

school. I managed to secure a position working with Erik Brunvand working on

a project I was and am passionate about (much of which is represented in this

dissertation). Erik was a great example for me and was the perfect advisor for

keeping my mental stability even though I was not always able to complete all tasks

as promptly as we would have liked. Erik helped me develop as a researcher, but

he also encouraged artistic expression, and helped me develop my teaching ability as

much as I let him.

I should also thank my committee, Al Davis, Rajeev Balasubramonian, Pete

Shirley, and Ingo Wald for the encouragement, support, and many great discussions

we had over the years. I was able to work with a number of excellent graduate students

as well, but feel an extra acknowledgement should be given to Daniel Kopta, who was

a co-author for all of the papers that contributed to this dissertation. The Utah

architecture lab members gave me valuable feedback and provided many enjoyable

conversations and diversions over the years. I should also thank Karen Feinauer and

Ann Carlstrom for the excellent institutional support they provided.

xii

CHAPTER 1

INTRODUCTION

Computer generated images are used for many professional tasks including movies,

video games, computer aided drafting, visualization, medical imaging, and others.

These images are useful for reducing costs, providing added insight, and increasing

the effectiveness of workers in their respective fields. There are two principal metrics

that the users of these applications want from image rendering: image quality and

speed of image synthesis, often called framerate. In situations where image quality

is the most important, offline rendering is typically used where a computer, or a

cluster of computers, spends a very long time to generate one image. When framerate

and interactivity are more important, shortcuts are taken and often special purpose

hardware is used to generate images many times a second. A common metric to

measure speed of rendering is the number of frames per second which is usually

abbreviated as fps. In both cases, there are two primary classes of algorithms used:

rasterization and ray tracing. While other methods for image synthesis do exist, this

dissertation will focus primarily on these two techniques. Considering a first order

approximation, rasterization algorithms scale linearly with the number of triangles or

primitives in the scene while ray tracing algorithms scale linearly with the number of

pixels or samples in the final image. Both algorithms have been used in both offline

rendering (seconds to hours per frame), and interactive (5-15 fps) to real-time (20+

fps) rendering.

1.1 Existing Approaches to Graphics Processing

At present almost every personal computer has a dedicated processor that enables

interactive 3D graphics, whether a discrete add-in card or integrated on the same

die as the main CPU. These graphics processing units (GPUs) implement some

version of the z-buffer algorithm introduced in Catmull’s landmark University of

2

Utah dissertation [3]. In this algorithm the inner loop iterates over all triangles in

the scene and projects those triangles to the screen. It computes the distance to the

screen (the z-value) at each pixel covered by the projected triangle and stores that

distance in the z-buffer. Each pixel is updated to the color of the triangle (perhaps

through an image-based texture lookup or through a procedural texturing technique)

unless a smaller distance, and thus a triangle nearer to the screen, has already been

written to the z-buffer (see Figure 1.1). A huge benefit of this approach is that

all triangles can be processed independently with no knowledge of other objects in

the scene. Current mainstream commercial graphics processors use highly efficient

z-buffer rasterization hardware to achieve impressive performance in terms of triangles

processed per second. This hardware generally consists of deep nonbranching pipelines

of vector floating point operations as the triangles are streamed through the GPU and

specialized memory systems to support texture lookups. However, the basic principle

of z-buffer rasterization, that triangles are independent, becomes a bottleneck for

highly realistic images. This assumption limits shading operations to per-triangle or

per-pixel computations and does not allow for directly computing global effects such

as shadows, transparency, reflections, refractions, or indirect illumination. Tricks are

known to approximate each of these effects individually, but combining them is a

daunting problem for the z-buffer algorithm. The most common trick is to add an

extra pass through all of the geometry in the scene, but that is inherently wasteful

since it consumes communication resources for redundant data.

Modern GPUs can interactively display several million triangles in complex 3D

environments with image-based (look-up) texture and lighting. The wide availability

of GPUs has revolutionized how work is done in many disciplines, and has been a boon

to the hugely successful video game industry. While the hardware implementation

of the z-buffer algorithm has allowed excellent interactivity at a low cost, there are

(at least) three classes of applications that have not benefited significantly from this

revolution:

• those that have datasets much larger than a few million triangles such as

vehicle design, landscape design, manufacturing, complex movie scenes, and

some branches of scientific visualization;

3

Eye Screen

Figure 1.1: The Z-buffer Algorithm

• those that have nonpolygonal data not easily converted into triangles;

• those that demand high quality shadows, reflection, refraction, and indirect

illumination effects such as architectural lighting design, rendering of outdoor

scenes, realistic movie scenes, and vehicle lighting design.

These classes of applications typically use Whitted’s ray tracing algorithm [4, 5, 6].

The ray tracing algorithm is better suited to huge datasets than the z-buffer algorithm

because its natural use of hierarchical scene structuring techniques allows image

rendering time that is sublinear in the number of objects. While z-buffers can use

some hierarchical culling techniques, the basic algorithm is linear with respect to the

number of objects in the scene. It is ray tracing’s larger time constant and lack of

a commodity hardware implementation that makes the z-buffer a faster choice for

datasets that are not huge. Ray tracing is better suited for creating shadows, reflec-

tions, refractions, and indirect illumination effects because it can directly simulate

the physics of light based on the light transport equation [7, 8]. By directly and

accurately computing composite global visual effects using ray optics, ray tracing

can create graphics that are problematic for the z-buffer algorithm. Ray tracing

4

also provides flexibility in the intersection computation for the primitive objects,

which allows nonpolygonal primitives such as splines or curves to be represented

directly. Unfortunately, computing these visual effects based on simulating light rays

is computationally expensive.

1.2 Raster Graphics

Commercial hardware for rasterization must all implement an interface to the

widely used OpenGL [9] and DirectX [10] libraries in order to be competitive. Both

libraries are very similar and perform the same set of functions, but with subtle

differences. To understand how graphics hardware is implemented, it is interesting to

examine the OpenGL pipeline (chosen because it is an open standard). The OpenGL

Programming Guide [11] discusses the key stages in the OpenGL pipeline, which

include: pixel operations, per-vertex operations, texture assembly, rasterization, and

per-fragment operations, as seen in Figure 1.2. In older GPU architectures, the

programmable vertex and pixel shaders were handled by separate pipeline units, but

modern GPUs have become unified and perform all programmable processing in the

same set of units. Advanced Micro Devices (AMD) recently announced Mantle [12]

technology uses the same style of processing while exposing different parts of the

underlying architecture explicitly to the programmer.

Rasterization is known to work well in single instruction multiple data (SIMD)

execution, which is why GPUs that are optimized for it are SIMD architectures. Each

triangle is first projected to screen space, a series of operations that are repeated

Display List

Evaluator Per-Vertex
Operations Rasterization Per-Fragment

Operations
Frame
Buffer

Pixel Operations

Texture
Memory

Figure 1.2: OpenGL Pipeline

5

for each triangle, as can be seen in Figure 1.1. This projection is performed by

multiplying each vertex by a 4x4 transformation matrix to place it in the canonical

viewing volume. Each vertex can also have operations performed on it which are

repeated for each vertex, and are optimally nondivergent. Subsequently, a set of

fragments are generated by an optimized scan-line conversion process, which when

using the same bounding box, does not diverge. Then shading is performed on each of

the fragments that graduates into the frame buffer by passing a “z” test. Each phase

of typical rasterization can easily be mapped to efficient SIMD execution. Due to the

fact that triangles are considered to be entirely independent, rasterization lends itself

well to GPU-style SIMD.

1.3 Ray Tracing

Ray tracing as an algorithm is designed to approximate the physics of light and

more easily achieves some of the complex lighting effects that are more difficult to

achieve with rasterization. Much work is being done to attempt to bring the ray

tracing algorithm to real time, or at least interactive frame rates. Most modern ray

tracers resemble to a great extent the 1980s Whitted ray tracer [4] with improvements

and optimizations.

While the ray tracing algorithm is not particularly parallel at the instruction

level, it is extremely (embarrassingly) parallel at the thread level. Ray tracing’s

inner loop considers each pixel on the screen. At each pixel a 3d half-line (a “ray”)

is sent into the set of objects and returns information about the closest object

hit by that ray. The pixel is colored (again, perhaps using texture lookups or a

procedurally computed texture) according to this object’s properties (Figure 1.3).

This line query, also known as “ray casting” can be repeated recursively to determine

shadows, reflections, refractions, and other optical effects. In the extreme, every ray

cast in the algorithm can be computed independently. What is required is that every

ray have read-only access to the scene database, and write-only access to a pixel in

the frame buffer. Importantly, threads never have to communicate with other threads

(except to partition work among the threads, which is done using an atomic increment

instruction in our implementation). This type of memory utilization means that a

6

Eye
Screen

Ray

Figure 1.3: The Ray Tracing Algorithm

relatively simple memory system can keep the multiple threads supplied with data.

It should be noted that some level of parallelism can be extracted by intersecting

a given ray with multiple triangles at once, something that is exploited by Intel’s

Embree [13, 14].

The three main kernels of a ray tracer are traversal, intersection, and shading.

Traversal is the first phase of ray tracing computation and involves the traversal of a

tree-like structure to reduce the number of intersection tests that must be performed.

These tree-like structures are called acceleration structures and are discussed in more

detail in Section 1.3.1. Intersection is the phase of ray tracing where rays are tested

for intersection with the primitive objects in the scene being rendered. Shading is

the final stage of computation where the final color is determined based on the color

of objects, the positions of the lights and the impact of other objects in the scene on

the illumination of objects. Shading in ray tracing is essentially identical to shading

in rasterization with an important difference being the casting of additional rays for

secondary lighting effects. Most of the general improvements that have been made

for shading on GPU-based rasterizers can be applied to shading when using a ray

7

tracer. Therefore the two most interesting phases to look at when improving ray

tracing performance are the traversal and intersection.

Primitive intersection involves computing the intersection of a ray with a primitive,

usually a triangle. A system which includes programmable intersection operations

could easily be extended to intersect arbitrary types of geometric primitives, however,

triangles are the most interesting for supporting legacy scenes and current production

tools for video games and movies (to a lesser extent). From each point where the ray

intersects an object in the scene, an additional “secondary” ray can be recursively

cast into the scene to determine optical effects such as shadows, reflections, refraction,

caustics (focused light from an indirect source), and other global illumination and

optical effects. Ray tracing has distinct advantages over rasterization in terms of

its ability to easily render these optical effects, making ray tracing the rendering

algorithm of choice for highly realistic images. Ray tracing can also be effectively

used for traversing volumetric data and large datasets, such as medical images and

other scientific data. Work has been done to optimize the exact computation done

when intersecting a ray with a triangle [15, 16], but without a smart method to choose

which rays need to check for intersection with which triangles, an exhaustive search

of the triangles would need to be performed.

1.3.1 Acceleration Structures

An acceleration structure is used by a ray tracer to greatly improve the speed and

efficiency of rendering. Without an acceleration structure, the total render time for a

scene is on the order of the number of pixels times the number of objects in the scene.

It is the acceleration structure that allows for logarithmic time complexity in the

number of objects in the scene. In order for an acceleration structure to work most

efficiently, it would instantly determine which objects in the scene are intersected by

the ray in question, and which ones are missed entirely. A simple example would be

the case where the entire set of objects in the scene can be enclosed by a single box,

and by performing a single ray-box intersection test, the ray tracer can find if a ray

misses the box entirely, therefore missing the scene entirely. This single intersection

test is much quicker than performing an intersection test with all but the most trivial

8

scenes. When the ray-box test comes back positive, then the ray tracer does not

know whether an object is actually hit or not, and additional computation must

be performed. The scene could then be further divided into subscenes, each with

their own bounding box, in order to hopefully eliminate large chunks of the geometry

from each intersection test. While this technique is useful, the performance of an

acceleration structure varies greatly from scene to scene and can also depend on the

ray direction and which kind of build technique was used to generate the acceleration

structure.

A variety of acceleration structures are used regularly in ray tracers [17] including

KD-trees, bounding volume hierarchies (BVH), and grids. While each acceleration

structure has its benefits, this work uses BVHs because they guarantee that each

triangle is in only one leaf node and that each leaf node has at least one triangle

in it and are fairly efficient at removing unnecessary volumes of space quickly. The

performance of traversing an acceleration structure can be improved by either opti-

mizing the creation of the structure for better run-time performance [18], or by using

a structure that better culls away the empty space. BVHs are typically used for

most animations because a simple refit can be performed relatively cheaply without

a huge loss in traversal performance over time [19, 20]. Some work is more focused

on reducing the build time of structures to facilitate dynamic scenes [21].

1.3.2 Ray Tracing Optimizations

Since recent GPU and CPU architectures depend heavily on SIMD for perfor-

mance, work has been done to parallelize ray traversal across 4-wide (or sometimes

wider) SIMD units. Typically a set of rays are grouped together in a packet to be

traced together. This packet is further simplified during traversal by using a proxy for

the packet, such as a frustum [22, 23] or a subset of the rays in the packet [24]. These

techniques, often called packet tracing, are known to work well for primary visibility in

ray tracing, but are less efficient when the rays become less spatially coherent, which

happens when generating the more interesting lighting effects that are desired from

ray tracing. Parallelization has also been analyzed for the construction of acceleration

structures [25].

9

NVIDIA introduced their OptiX engine for ray tracing [26] to also take advantage

of SIMD compute resources to accelerate ray tracing. They divide the ray tracing

algorithm up into a set of kernels that can each execute independently (though they

might just be different inner loops of what is called a “megakernel”) to reduce the

impact of divergence in the acceleration structure traversal. This technique requires

additional overhead in managing the individual threads and efficiently assigning the

threads to available execution resources. In the Fermi architecture [27] and beyond,

much effort has been put forth to allow for multiple simultaneous kernels to execute

and for faster thread context switching. Wavefront formulation [28] has been proposed

as an improvement over the more traditional megakernel approach. Other ray tracers

have been made to use CPU SIMD extensions [14] and to even execute on architectures

like the Cell [29]. These efforts require significant reorganization of memory and are

no small task for the programmer to implement correctly.

A path tracer is similar in most ways to a ray tracer, especially in the overall

flow of the program, however, the memory access pattern is different due to the

selection of rays being traced. While the term “ray tracer” can describe a broad

set of approaches involving the tracing of rays through a scene, a Cook-style path

tracer [30] only traces a single path of light by randomly choosing one of the possible

rays that could be chosen at each decision point. For example, when a ray hits a diffuse

surface where the light is expected to bounce in any direction with equal probability,

the secondary ray direction is chosen randomly in the hemisphere described by the

normal at that intersection point. Similarly, when approximating blurry reflections,

the ray directions will prefer to be chosen in some cone mostly facing the direction

of a perfect reflection on that surface. Due to the stochastic sampling performed by

Cook-style path tracers, a large number of samples should be gathered per pixel in

order for the final image to converge to a set of values that are close to correct.

Some applications are not currently close to being interactive on GPUs regardless

of image quality because their number of primitive objects N is very large. These

include many scientific simulations [31], the display of scanned data [32], and terrain

rendering [33]. While level-of-detail (LOD) techniques can sometimes make display of

geometrically simplified data possible, such procedures typically require costly prepro-

10

cessing and can create visual errors [34]. Simulation and games demand interactivity

and currently use z-buffer/rasterization hardware almost exclusively. However, they

spend a great deal of computational effort and programmer time creating complicated

procedures for simulating lighting effects and reducing N by model simplification. In

the end they have images of inferior quality to those generated by ray tracing. I

believe that these industries based on interactive graphics rendering would use ray

tracing if a solution existed that were fast enough.

As mentioned previously, shading is an important part of both ray tracing and

rasterization. The computations involved are the same and the architectural and

algorithmic improvements for GPU rasterizers as well as offline renderers are appli-

cable to both algorithms. A variety of shading techniques are commonly used, such

as Gouraud [35] and Phong [36] shading. Image textures or computed textures can

be sampled as well to get the base color for the shading computation and can also be

used to perform bump mapping [37].

1.4 Applications and Scenes

In this dissertation, there are two kinds of ray tracers used to evaluate the archi-

tectural improvements. They are discussed in more detail in Section 4.6. The first ray

tracer is a Kajiya style [8] ray tracer that supports recursive ray tracing and standard

surface shading techniques (lambertian and phong). This Kajiya ray tracer only

supports a single light source, and casts a shadow ray during shading to determine if

the surface is in light or shadow. A version of this type of ray tracer exists written

entirely in our TRaX assembly language, another compiled for a variable number of

registers with the call stack in registers, and a third compiled for 32 registers using

only the local store memory for program stack. The second kind of ray tracer is a

Cook-style path tracer. The path tracer computes global illumination in the scene by

allowing many samples to be taken while tracing each sample to a fixed ray depth on

each run. The shading technique used is a Monte-Carlo sample lambertian shading.

Some more advanced and varied rendering techniques have also been implemented

successfully on the architecture, but they will not be represented in the results of this

dissertation.

11

A number of different scenes are regularly used to evaluate the performance of

ray tracers in order to allow for comparison of different techniques and modifications.

Figure 1.4 shows a number of scenes that are used in a number of chapters in this

dissertation. More details on these scenes and their use in simulation can be found

in Chapter 5. In general, the scenes with higher triangle counts tend to require more

memory bandwidth to render since they cannot fit in the caches and trend towards

a larger working set. The scenes with fewer triangles tend to have fewer misses

in the caches, and result in faster render times. However, the quality and kind of

acceleration structure have a large affect on the render time of the scenes, so there

are some experiments where a scene with relatively few triangles causes difficulty for

the acceleration structure builder, resulting in more memory bandwidth usage, lower

hit rates, and longer render times.

1.5 Dissertation

Most interactive graphics applications follow a trend of models increasing in size

(Greenberg has argued that typical model sizes are doubling annually [38]). Most

applications also demand increasingly more visual realism in order to provide more

utility to their professional users and more enjoyment for video gamers. I believe

these trends favor ray tracing in the future (either alone or in combination with

rasterization for some portions of the rendering process). Following the example of

graphics processing units (GPUs), I also believe that a special purpose architecture

can be made capable of interactive ray tracing for large geometric models. Such special

purpose hardware has the potential to make interactive ray tracing ubiquitous. Ray

Figure 1.4: Example Ray Traced Scenes

12

tracing can, of course, be implemented on general purpose CPUs, and on specially

programmed GPUs. Both approaches have been studied, along with a few previous

studies of custom architectures and more on these studies can be found in Chapter 6.

Both rasterization and ray tracing can be expressed as SPMD (single program

multiple data) applications, where a single program is executed on each independent

thread. This dissertation focuses on the ray tracing algorithm as the method of

producing high quality images for future applications. While many ray tracers exist

that run on CPUs, the architecture of a CPU has many features for general purpose

processing that are not needed for ray tracing. GPUs use rasterization for rendering

and are designed to accelerate rasterization even at the expense of general purpose

computation performance. The fact that GPUs use SIMD (single instruction, multiple

data) to perform rasterization suggests that rasterization maps well to a SIMD

architecture. Note that while GPU vendors have frequently used the term SIMT

(single instruction, multiple threads) to describe the fact that each data element

in effect comes from a separate logical thread with hardware support for thread

divergence, this dissertation generally uses the terms, SIMD, SIMT and GPU SIMD

interchangeably, except where specified. Even though recent research has shown ways

to map ray tracing to SIMD architectures, the ray tracing algorithm is generally not

efficiently executed on SIMD hardware because of poor SIMD utilization. This lack

of compatibility with SIMD hardware stems from the way any arbitrary group of

rays is likely to intersect different objects in the scene. Rasterization hardware takes

advantage of the independence of the triangles to stream them through wide SIMD

computation units. Ray tracing, in contrast, performs a logarithmic-time lookup of

the primitives, which can perform better when each independent lookup is allowed

to become out of sync with other searches. This is more naturally supported in a

loosely coupled SPMD/MIMD architecture, though there is extra overhead from a

naive MIMD implementation. CPU SIMD extensions have been shown to increase

performance greatly for CPU architectures, primarily because the SIMD extensions

are included at a small overhead to the already large CPU architecture. It is possible

to use simpler individual processing units for higher thread-level parallelism, removing

the need for CPU SIMD extensions. The incremental overhead of adding extra

13

processing units can be greatly reduced by increasing the level of sharing among

a group of these units where independent execution units provide little benefit.

In general, this dissertation explores architectural approaches to improving ray

tracing performance, while still retaining a high level of programmability. Specifically,

I will show that a throughput-oriented architecture with many simple cores operating

in SPMD/MIMD mode can have significantly better performance on applications

like ray tracing than fewer heavy-weight cores, like a CPU with SIMD extensions

or an architecture where the threads are more closely coupled such as in a SIMD

GPU. I present an architecture called TRaX (for Threaded Ray eXecution), which is

specifically designed to exploit the opportunities available in the ray tracing algorithm

for independent thread parallelism. This kind of parallelism is different from the

SIMD style of parallelism that is so popular in current GPUs and CPUs, but is much

better suited to ray tracing and other similarly branchy applications, though I provide

no explicit analysis of other applications. In fact, CPUs and GPUs both support the

same kind of parallelism as TRaX, but to a much lesser extent. Each core of a CPU

is independent in the same way that each thread in TRaX is independent, and each

SIMD cluster in a GPU could be caused to operate in a scalar fashion to also have

independent thread execution. Clearly these techniques would greatly under-utilize

the hardware available in both a CPU and a GPU, but are in fact what happens when

those machines encounter the worst case program divergence. Using improvements

proposed for the TRaX architecture, real time rendering can much more quickly

approach the quality of the offline-rendered images seen in Figure 1.5. The existence

of commercial ray tracing processors would cause a new revolution in the real-time

rendering community.

14

Figure 1.5: Path Traced Images from Lux [1] at 128 Samples Per Pixel

CHAPTER 2

A MIMD THROUGHPUT COMPUTE

SOLUTION123

As the title of this chapter suggests, the solution I propose for ray tracing involves

MIMD (multiple instruction, multiple data) processing. TRaX (for threaded ray

execution) is specifically designed to accelerate single-ray performance and to exploit

thread-level parallelism using multiple thread processors and cores. Ray tracing is an

application with the potential for massive amounts of thread-level parallelism. For

example, a single frame of a 1080p HD image contains about two million pixels, each

of which represents at least one primary ray. Furthermore, high quality ray tracing

greatly benefits from increased sampling beyond a single primary ray (16 samples per

pixel is a good start), and secondary rays can also be traced independently to create

greater opportunities for thread-level parallelism. A high quality two million pixel

ray traced image with two diffuse bounces and two point light sources along with 16

samples per pixel would involve 96 million illumination rays that require full shading

computations and 192 million shadow rays that contribute to lighting through the

same acceleration structure traversal for a total of 288 million rays. The potential

number of parallel hardware threads that may improve the performance of a ray tracer

is in the millions.

1This chapter is modified with permission from J. Spjut, A. Kensler, D. Kopta, and E. Brunvand,
“TRaX: A multicore hardware architecture for real-time ray tracing,” IEEE Transactions on
Computer-Aided Design, vol. 28, no. 12, pp. 1802 – 1815, Copyright c⃝2009 IEEE.

2This chapter is modified with permission from D. Kopta, J. Spjut, E. Brunvand, and A. Davis,
“Efficient MIMD architectures for high-performance ray tracing,” in IEEE International Conference
on Computer Design (ICCD), Copyright c⃝2010 IEEE.

3This chapter is modified with permission from J. Spjut, D. Kopta, E. Brunvand, and A. Davis,
“A mobile accelerator architecture for ray tracing,” in 3rd Workshop on SoCs, Heterogeneous
Architectures and Workloads (SHAW-3), Copyright c⃝2012.

16

2.1 Parallelism Considerations

MIMD is a style of parallelism that involves duplicating the processor to allow

multiple processors to execute in parallel. While it may initially appear trivial to

duplicate a processor, there are a number of difficulties in allowing multiple processors

to execute simultaneously, and nearly all of the difficulties involve the system required

to deliver the data values to each processor. SIMD (Single Instruction, Multiple

Data) instead exploits the situation when a program needs to perform the same basic

operation on multiple pieces of data in parallel. If a single executing thread performs

SIMD instructions, the processor is sometimes referred to as a vector processor since

the multiple data elements can be thought of as a vector. When the multiple data

elements are instead considered to come from independent threads, the term SIMT

(Single Instruction, Multiple Threads) is often used. Typically, SIMT also indicates

that the processor has hardware support for masking off computations for threads

that may have divergent execution paths due to conditional branching.

A ray tracer can be expressed in a Single Program, Multiple Data (SPMD)

programming model relatively easily. This single program could be executed using a

traditional, single thread of execution trivially by allowing the program to loop over

all tasks until they are all completed. A natural option would be to parallelize tasks

using a MIMD processor with many hardware threads with full support for thread

divergence. However, most commercial architectures include support for SIMD or

SIMT processing, and as a result, heroic efforts are exerted to keep the data elements,

or coupled threads from diverging as much as possible to match the underlying

processor’s limitations. I propose only using hardware features that work well with the

natural behavior of the algorithm, rather than warping the fundamental ray tracing

algorithm to match hardware designed for other applications.

Chapter 6 details many other architectures used for ray tracing [39, 40, 29, 41,

42, 43, 44, 45], which exploit parallelism using SIMD to execute some number of

the same instructions at the same time. This technique does not scale well if the

rays in the SIMD bundle become less coherent with respect to the scene objects they

intersect [46]. In that case, what was a single SIMD instruction will have to be

repeated for each of the threads as they branch to different portions of the scene and

17

require different intersection tests and shading operations. Because TRaX threads

are independent we do not have to wastefully mask off results of functional unit

operations.

SIMD works well as long as all of the threads attempt to execute the same

instruction all the time. In fact, SIMD is better in this case because there is a

reduction in the instruction fetch and decode stage of the pipeline. There exists a set

of applications, however, that are known to not execute well on SIMD architectures

because of poor utilization of the execution units. These applications suffer from

many branches where a SIMD block has a high chance of diverging, causing some of

the threads to execute different instructions than the rest of the threads.

There are some ways to reduce the loss in performance from divergent branching,

such as filtering threads, and causing threads to block at certain points until the

divergent threads reconverge. However, these techniques still result in additional

overhead and reduced SIMD utilization. A standard high-performance ray tracer uses

a tree-like acceleration structure to increase the performance of the visibility query

per ray. Divergence comes when the individual rays take a different path through

the data structure and end up in different phases of the computation. For instance,

one thread may only need to intersect 32 nodes while another thread may require

1024 node intersection tests before moving on to triangle intersections. It is highly

inefficient to have the first thread stand idle for such a large amount of time when it

could continue on and begin working on a new ray. In fact, the percentage of threads

able to issue on average per cycle is often used to report the efficiency of such SIMD

systems and is called SIMD efficiency.

2.1.1 Nonparallel Applications

There exist some applications that are entirely serial in nature, or have a large

percentage of the execution that cannot be made parallel. These applications are not

very interesting in a study of parallel architectures since they do not benefit from

any of the parallel improvements. CPUs are designed to extract instruction-level

parallelism and can therefore do a good job of speeding up these applications without

the use of SIMD extensions. Features like out-of-order issue, super-scalar use of

multiple issue slots, and deep pipelines with aggressive branch prediction can improve

18

performance where SIMD and MIMD multithreading designs have essentially no effect

on nonparallel program run-time.

2.1.2 Parallel but Branchy

There is another set of applications that are highly parallel, often called embar-

rassingly parallel, that can benefit greatly from a large number of parallel threads. In

many cases these applications have some outer loop that has few dependencies across

iterations of the loop, or at least dependencies that still allow for parallelization.

These applications are of the set that can benefit from parallel hardware implementa-

tions. SIMD is a good match for such an application as long as the time spent in one

iteration, and the instructions issued within that iteration, are relatively consistent.

When the core operations have a high amount of variability then a MIMD design is

likely to come out on top.

MIMD is a style of execution that, in contrast to SIMD, allows each parallel thread

of execution to both operate on different data and execute different instructions. This

can be found in multicore CPUs as each core executes its own instruction and is not

required to execute the same instruction as any other core. Even on wide SIMD

architectures like GPUs, there are many separate SIMD blocks that can each execute

different instructions even though all the threads within a SIMD block must have the

same instruction.

Vector computing is implemented very similarly to SIMD and the two terms are

often used interchangeably in the literature. There is, however, a subtle difference

between them and how these terms will be used here. Vector computing is when a

single thread of execution has an operation to perform on data that can be thought of

as a vector data type. So while SIMD executes many scalar operations from different

threads or data streams in parallel, vector computing issues a vector operation from

a single thread.

2.2 The TRaX Architecture

The vast majority of related commercial and research projects used to accelerate

ray tracing depend on SIMD architectures to perform ray tracing. The huge constraint

all of those projects deal with is the need for the threads executing in SIMD to remain

19

synchronized as much as possible to achieve high SIMD utilization. Any time a thread

in a SIMD block decides it needs to test for intersection of a node or primitive that

the other threads do not need to test, the work is wastefully repeated for all of the

other threads.

The TRaX architecture [47, 48, 49, 50, 51, 52] is a many-threaded architecture

designed for fast ray tracing throughput. The approach is to optimize single-ray

MIMD performance across many simple cores. This single-ray programming model

loses some primary ray performance. However, it makes up for this by handling

secondary rays (discussed in Section 1.3) nearly as efficiently as primary rays, where

SIMD optimized ray tracers struggle. In addition to providing high performance, this

approach can also ease application development by reducing the need to orchestrate

coherent ray bundles. For the analysis of architectural options, a number standard

ray tracing benchmark scenes are used, four of which are shown in Figure 2.1. More of

the test scenes can be found in Chapter 5 along with detailed results from simulations.

These scenes provide a representative range of performance characteristics.

Threads represent the smallest division of work in the ray-traced scene, so the

performance of the entire system depends on the ability of the architecture to flexibly

and efficiently allocate functional resources to the executing threads. As such, our

architecture consists of a set of thread processors, called TPs, that include some

functional units in each TP with other larger functional units being shared among

nearby TPs. A collection of these TPs, their shared functional units, issue logic, and

shared L1 cache are collected into a “thread multiprocessor,” or TM.

Conference
282k triangles

(a)

Sponza
76k triangles

(b)

Sibenik
80k triangles

(c)

Fairy
174k triangles

(d)

Figure 2.1: Test Scenes Used to Evaluate Performance. (a) Conference (b) Sponza
Atrium (c) Sibenik Cathedral (d) Fairy Forest

20

A full chip consists of many TMs, each containing many TPs, sharing one or more

on-chip L2 caches and off-chip memory and I/O bandwidth. Because of the parallel

nature of ray-tracing, threads (and thus TPs) have no need to communicate with

each other except to atomically divide the scene. Therefore, a full on-chip network

is neither provided nor needed. In order to support multichip configurations, off-chip

bandwidth is organized into lanes, which can be flexibly allocated between external

memory and other I/O needs.

In TRaX, the lack of synchrony between ray threads reduces resource sharing

conflicts between the cores and reduces the area and complexity of each core. With

a shared multibanked Icache, the cores quickly reach a point where they are each

accessing a different bank. Shared functional unit conflicts can be similarly reduced.

Given the appropriate mix of shared resources and low-latency Dcache accesses, TRaX

can sustain a high instruction issue rate without relying on latency hiding via thread

context switching. This results in a different ratio of registers to functional resources

for TRaX processing elements when compared to the hardware in commercial GPUs.

The GPU approach involves sharing a number of thread states per core, only one

of which can attempt to issue on each cycle. TRaX Thread Multiprocessors (TM)

contain one thread state per Thread Processor (TP), each of which can potentially

issue an instruction to a private per-core Functional Unit (FU) or one of the shared

FUs. I believe this single thread-state approach is a more efficient use of register

resources.

TRaX relies on asynchrony to sustain a high issue rate to the heavily shared

resources, which enables simpler cores with reduced area, breaking the common

wisdom that the SIMD approach is more area efficient than the MIMD model, at

least for ray tracing. MIMD threads are allowed to progress through the program at

their own pace, meaning that the Program Counters (PC) among a group of threads

do not maintain the same value as is required for SIMD execution. Threads do not

get significantly out of sync on the workload as a whole, thus maintaining coherent

access to the scene data structure, and results in high cache hit rates.

21

2.2.1 A Thread Processor

Each TP in a TRaX TM can execute the single program based on its own program

counter in a standard SPMD/MIMD fashion as defined in Chapter 1, where a software

thread corresponds to a ray. In addition to the private program counter, each thread

also maintains a private register file. The register file is a simple 2-read, 1-write

static read only memory (SRAM) block. Register forwarding may be enabled in our

simulator and allows operands to be available to instructions before the write-back

stage of the pipeline. The type and number of independent functional units is variable

in the TRaX simulator. More complex functional units are shared by the TPs in a

TM. The TPs in a TM also share access to a multibanked instruction cache for the

shared set of instructions. A block diagram of a thread processor can be found in

Figure 2.2. Note that the local memory is optional and is not included in all TRaX

designs, but it used in order to restrict the register file to 32. When the local memory

is removed, the register file extends to 128 general purpose registers.

For a simple ray tracing application, large, complex instruction sets such as those

seen in modern x86 processors are unnecessary. Our architecture implements a basic

set of functional units with a simple but powerful instruction set architecture (ISA).

We include bitwise instructions, branching, floating point/integer conversion, memory

Register
File

Local
Memory

Local
Function

Units

Shared
Function

Units

Shared
L1 Cache

Thread Processor

Figure 2.2: Thread Processor Block Diagram

22

operations, floating point and integer add, subtract, multiply, reciprocal, and floating

point compare. We also include reciprocal square root because that operation occurs

with some frequency in graphics code for normalizing vectors.

Instructions are issued in order in each TP to reduce the complexity at the thread

level. The execution is pipelined with the fetch and decode; each taking one cycle.

The execution phase requires a variable number of cycles depending on the functional

unit required, and the writeback takes a final cycle. Instructions issue in order,

but may complete out of order. Thread processing stalls if needed data are not yet

available for register forwarding, or if the desired functional unit is not available,

but correct single-thread execution is guaranteed. Each TP is configured to issue

a single instruction per cycle, although the simulator has support for higher thread

issue width.

Because issue logic is split between the individual thread processor and the shared

units in the TM, only some of the complexity in terms of dependence checking is

internal to each thread. A simple table maintains instructions and their dependencies.

Instructions enter the table in FIFO fashion, in program order, so that the oldest

instruction is always the next available instruction. Issue logic checks only the

status of this oldest instruction. Single thread performance is dependent on the

programmer/compiler who must order instructions intelligently to hide functional

unit latencies as often as possible. An important point to remember though, is that

the overall system throughput is what is most important for ray tracing, not the

performance of an individual thread.

Depending on which version of TRaX is being simulated, a number of thread

features can be turned on or off as needed. The thread register file can be restricted

to a size of 32 registers (the default in our compiler, though other register restrictions

could be allowed) when using a compatible compiler, in which case a small local

storage SRAM is used for thread-local stack space. However, when other compila-

tion techniques are used, the architecture may instead be configured with a larger

register file, allowing thread-local stack operations to be performed through special

register offset instructions. The specifics of these configurations and their associated

simulations are reported in Chapter 5.

23

2.2.2 A Collection of Threads in a Thread Multiprocessor

Each of the Thread Multiprocessors(TM) on a chip consists of a set of simple

thread processors with shared L1 data cache and shared functional units, as shown

in Figure 2.3(a). As mentioned above, the set of TPs in a TM share access to a

many-banked instruction cache that can be varied in our simulations. Additionally,

all threads in a TM share one multibanked L1 data cache of a modest size, also

variable in our simulations. One example is 2K lines of 16-bytes each, direct mapped,

with four banks. Many TMs on a multi-TM chip share a L2 unified data cache as

the total code size is small enough to fit in a 4kB L1 instruction cache. Graphics

processing is unique in that large blocks of memory are either read-only (e.g., scene

data) or write-only (e.g., the frame buffer). To preserve the utility of the cache,

write-once data are written around the cache. For our current ray tracing benchmarks

no write data needs to be read back, so all writes are implemented to write around the

cache (directly to the frame buffer). Separate cached and noncached write assembly

instructions are provided to give the programmer control over which kind of write

should occur. This significantly decreases thrashing in the cache by filtering out the

largest source of pollution. Hence, cache hit rates are high and threads spend fewer

cycles waiting on return data from the memory subsystem.

(a) (b)

Figure 2.3: Potential TM and Multi-TM Chip Floor Plans. (a) TM Layout of 32
TPs and Shared Resources. (b) Chip with Multiple TMs Sharing L2 Caches.

24

Each shared functional unit is independently pipelined to complete execution in

a given number of cycles, with the ability to issue a new instruction each cycle. In

this way, each thread is potentially able to issue any instruction on any cycle. With

the shared functional units, memory latencies and possible dependence issues, not all

threads may be able to issue on every cycle. The issue unit gives threads priority to

claim shared functional units in a round robin fashion. It is important to note that

it is a good thing when the threads in a TM get a little out of sync with each other

because it reduces the pressure on the shared functional units in any given cycle.

Each TP controls the execution of one ray-thread at a time. Because the par-

allelism we intend to exploit is at the thread level, and not at the instruction level

inside a thread, many features commonly found in modern microprocessors, such as

out-of-order execution, complex multilevel branch predictors, and speculation, are

eliminated from our architecture. This allows available transistors, silicon area, and

power to be devoted to parallelism. In general, complexity is sacrificed for expanded

parallel execution. This will succeed in offering high-performance ray tracing if we

can keep a large number of threads issuing on each cycle. Results in Chapter 5 show

that with 32 TPs per TM, 50% of the threads can issue on average in every cycle

for a variety of different scenes using an assembly-coded Whitted-style ray tracer [47]

and a path tracer coded in a C-like language [46]. This metric can be considered

roughly equivalent to the SIMD efficiency reported in similar studies using SIMD

architectures with one important distinction. Often SIMD efficiency is inflated by

allowing speculative execution to continue since the units would be in use anyway

while that computation will end up being thrown away and not used in the generation

of the final image.

2.2.3 Top Level Chip

Our overall chip model (Figure 2.3(b)) is a die consisting of number of blocks,

each with an L2 cache, an interface to off-chip memory and a number of TMs with

multiple TPs in each. Due to the low communication requirements of the threads,

each TP only needs access to the same read only memory and the ability to write

to the frame buffer. The only common memory is provided by an atomic increment

25

instruction that provides a different value each time the instruction is executed. The

L2 cache is banked similarly to the L1 cache to allow parallel accesses from the L1

caches of the many TMs on the chip. A number of miss status holding registers

(MSHR) are provided per TM and both the number of banks and number of MSHRs

are parameterized in the simulator.

2.2.4 Functional Units

Functional units are added to the simulator in a modular fashion, allowing support

for arbitrary combinations and types of functional units and instructions. This

allows very general architectural exploration starting from our basic thread-parallel

execution model. The clock rate is set to a conservative 500 MHz or 1 GHz clock

depending on the particular TRaX design. The clock rates were chosen based on

the latencies of the functional units that were synthesized using Synopsys Design

Compiler and DesignWare libraries [53] and well characterized commercial comple-

mentary metaloxidesemiconductor (CMOS) cell libraries from Artisan [54] for 130nm

and 65nm. Custom designed function units such as those used in commercial GPUs

would allow this clock rate to be increased, or allow for increased energy efficiency.

2.3 Example TRaX Architectures

Due to the flexible nature of the TRaX architecture, and the large number of

potential configurations, I only explore three primary configurations of TRaX ar-

chitectures in this dissertation. These three designs are: TM focused, a high-power

design, and a low-power embedded design. Each configuration is presented in greater

detail including results and analysis in Chapter 5. In each case, the goals for analysis

are different, and therefore the choices made in configuring the architecture are

distinct. Focusing on the TM design first allows for the isolation of some higher

level system considerations in order to perform an interesting analysis of a limited

design space. The second design leverages the discoveries from the first and examines

scaling to a large number of TMs in order to maximize ray throughput for a large

power and area constraint. Finally, a scaled down design with fewer TMs is examined

in order to evaluate the fitness of our techniques for mobile and low-power designs

with much greater power constraints. Each of these designs is useful for the architect

26

to consider, and the final two represent proposals for potential commercial ray tracing

hardware designs.

2.4 Conclusion

MIMD throughput architectures are a natural fit for ray tracing because of the

divergent branching regularly found in acceleration structure traversal. Within the

general TRaX framework discussed in this chapter, there is room for architectural

customization and design exploration to tune the architecture for ray tracing. In order

to evaluate the large number of parameters, it is useful to first simulate the expected

behavior of the architecture before expending the large hardware design effort required

to tape out and fabricate a single finished design. To this end, Chapter 3 describes the

TRaX simulation framework in detail and enumerates the large number of parameters

available in simulation. Furthermore, Chapter 4 discusses the programming model

and compiler support provided for TRaX while Chapter 5 describes the architectural

simulations and presents the results from those simulations.

CHAPTER 3

TRAX SIMULATION

The architecture described in Chapter 2 has been implemented as a cycle-accurate

simulator, called simtrax. A cycle-accurate simulator simulates the behavior of

an architecture one cycle after another. Other cycle-accurate simulators have been

widely used for architectural research, such as Simplescalar [55]. One benefit of

cycle-accurate simulation is that we can fairly accurately measure performance of the

system as long as the models for each component are reasonable without incurring

the huge cost of fabricating the architecture. In addition, the simple nature of

modifying the software of the simulator allows the exploration of many different and

closely related architectures in a short time and at low equipment cost. Further-

more, cycle-accurate simulation allows for straightforward instrumentation to gather

detailed information about the behavior of various components and the primary

causes of slowdown. Other methods for architectural simulation include functional

simulation, trace-driven simulation, and full system simulation. While our simulator

also requires the correct functionality, a functional simulator skips many of the details

of the simulated hardware in order to speed up the completion of the simulation at

the expense of cycle-accurate behavior. Trace-based simulators are often used for

architecture research, but they ignore the possible change in program execution based

on the performance of the architecture, which is exacerbated by the many parallel

threads of execution in TRaX simulations. A full system simulation would include

all levels of the system in the simulation, and while simtrax models many elements

of the architecture and system accurately, some parts of the system are abstracted

out, such as using an average access time for DRAM, and ignoring the setup time of

transferring the initial dataset into the memory. This chapter describes the details of

how the simtrax simulator works.

28

An overview of the simulation flow can be found in Figure 3.1. The simulation

begins by reading in a hardware configuration file describing some of the hardware

features while other parts of the configuration are specified at the command line.

The initialization stage instantiates the pieces of the hardware, including setting the

timing based on the configuration, and initializing the caches and memories. As

part of the initialization, a model is loaded into memory along with an acceleration

structure as specified by the parameters and model files. The main loop of simulation

consists of having the clock rise in each of the functional units, with an issue unit

handling the shared functional unit arbitration, followed by a clock fall that resets

the things that need to be reset or cleared on each cycle. As each thread reaches the

end of execution, the thread calls the HALT instruction and the simulator waits until

all the threads have reached a HALT instruction to complete execution. Finally, the

image stored in the frame buffer at the completion of execution is written to an image

file to verify correct functionality, and the gathered data are written to one or more

text files for analysis.

3.1 Simulation Configuration

When the TRaX simulator is run, it requires that a hardware configuration file

be supplied describing the hardware units that will be simulated. For each functional

unit, such as the multiplier, adder, floating point multiplier, and floating point adder,

a quantity is specified to be instantiated per TM in the simulation, along with a

latency of execution for each functional unit. These units are assumed to be fully

pipelined, meaning a new instruction can be issued on each cycle for each unit

instantiated. Additionally, area and power numbers can also be specified in the

hardware configuration file, allowing the simulator to accurately report the area used

by the configuration simulated. While the power numbers can be specified, they are

not yet used by the simulator to report power consumption.

The hardware configuration file also contains the L1 and L2 cache sizes, the

number of banks for each, and an access latency as well. Furthermore, the area

and power numbers can also be included for these units, allowing the simulator to

once again add the die area impact of the caches based on the simulation. The global

29

ParametersConfiguration

Initialization

Clock Rise

Clock Fall

Halt/Synchronize

Write Image Report Data
Figure 3.1: Simulator Overview

chip memory also should be specified in the hardware configuration in size and access

latency. As the memory is assumed to not be held on-die, the size and power usage for

the memory are not expected or considered by the simulator. An example hardware

configuration file can be seen in Figure 3.2.

3.2 Simulation Parameters

A large number of command line options are available at run-time for the TRaX

simulator. Table 3.1 lists the most relevant simulation parameters and their default

values. The simulator options allow for simulation of a large number of different

hardware configurations without recompiling the simulator itself. In particular, it has

been most useful and interesting to vary the following parameters and configuration

options:

• Number of threads in a TM

• Number of TMs sharing an L2 data cache

30

FPADD 1 4 3311 0.719
FPMIN 1 32 721 0.13
FPCMP 1 32 0 0.13
INTADD 1 32 450 0.101
FPMUL 1 4 10327 3.15
INTMUL 1 2 9184 2.97
FPINV 8 1 57936 45.55
CONV 1 32 0 .001
BLT 1 32 0 0.13
BITWISE 1 32 450 0.101
SPHERE 40 4
DEBUG 1 100
L1 1 8192 8 3 1490540
MEMORY 100 536870912
L2 2 8 16 3 0

Figure 3.2: Example Hardware Configuration File

• Number of L2s on a chip

• Number of each functional unit in a TM

• Execution latency of each functional unit

• Number of instruction caches, and banks for each instruction cache

• Capacity, latency and number of banks for each L1 and L2 data cache

• Whether the L1 and L2 data caches are on or off

• Image size (height and width)

• Model, view, light, and other rendering parameters

3.3 Simulation Initialization

Simtrax starts by checking the command line arguments and the hardware con-

figuration file to see how the threads, cores, caches and other hardware components

ought to be initialized. Once these hardware features are setup and initialized with

the given values, the memory must be set up to contain the global data values that

31

Table 3.1: Simulation Parameters

Option Argument Default Description
–width [number] 128 width of image in pixels
–height [number] 128 height of image in pixels
–num-regs [number] 128 number of registers per thread
–num-globals [number] 8 number of global registers
–num-thread-procs [number] 4 number of TPs per TM
–threads-per-proc [number] 1 number of hyperthreads per TP
–simd-width [number] 1 SIMD issue width within a TM
–num-cores [number] 1 number of cores (Thread Multiprocessors)
–num-l2s [number] 1 number of L2s
–simulation-threads [number] 1 number of simulator threads
–l1-off false turn off the L1 data cache
–l2-off false turn off the L2 data cache
–stop-cycle [number] none cycle to halt execution
–config-file [file] none config file name
–view-file [file] none view file name
–model [file] none model file name (.obj)
–far-value [number] 1000 far clipping plane (rasterizer only)
–light-file [file] none light file name
–output-prefix [prefix] out prefix for image output
–image-type [suffix] png type for image output
–ray-depth [number] 1 depth of rays
–epsilon [number] 1e-4 small number used for various offsets
–num-samples [number] 1 number of samples per pixel
–print-instructions off print contents of instruction memory
–no-scene off turns off loading scene
–issue-verbosity [number] 0 level of verbosity for issue unit
–num-icaches [number] 1 number of icaches in a TM (power of 2)
–num-icache-banks [number] 32 number of banks per icache
–load-assembly [file] none assembly file to execute
–print-symbols off print symbol table generated by assembler
–triangles-store-edges off set flag to store 2 edges instead of 2 verts

32

will be required by the ray tracer. The memory can be loaded with a memory image

from a previous run, which is just a file containing the values of each memory address.

More commonly, the memory loader reads in the scene data files provided, creates

a bounding volume hierarchy (BVH) or other acceleration structure, and then loads

all of those values into the memory along with pointers to structures such as the

BVH, the light, and the background color. An example of the memory layout based

on the conference scene and BVH build for that scene can be found in Table 3.2.

Pointers are stored in memory to allow the number of materials and triangles to be

variable while allowing the ray tracer to still be able to locate them at run time. The

frame buffer is the region of memory where the final colors are stored for each pixel.

The materials, scene and triangle data store the information necessary to trace rays

around the scene based on the camera and light information. The background color

is used for rays that do not intersect with any objects in the scene.

The final step of the initialization is to spawn a number of software simulation

threads that will each be in charge of a group of TMs. Simtrax does its best to find

a balanced workload division, putting at most one extra TM on the heavily loaded

simulation threads than the ones with a light load. Note that there are two kinds of

threads discussed in this chapter. Simulation threads are threads of the simulator

program that are each tasked with simulating a number of TMs that each contain

a number of simulated threads. Simulated threads are actual TRaX threads that

exist within the simulated architecture and are grouped into TMs which are tiled

on a TRaX chip depending on the configuration. The smallest possible simulation

consists of a single simulation thread of one TM with one simulated thread. Larger

simulations involve multiple simulation threads (typically around the number of cores

available on the simulating machine) simulating tens to hundreds of TMs, each with

16 or more simulated threads.

3.4 Execution

After initialization, simtrax begins executing on the first cycle. A cycle consists

of a clock rise and a clock fall being sent to each of the functional units in each of

the TMs. These events allow the functional units to perform a number of different

33

Table 3.2: Example Memory Layout
Item Memory Word Address

Decimal Hexadecimal
Constants and Pointers 0 0x00000000
Frame Buffer 38 0x00000026
Materials 16422 0x00004026
Scene 17523 0x00004473
Triangles 2147136 0x0020c340
Camera 13837940 0x00d32674
Background Color 13837975 0x00d32697
Light 13837978 0x00d3269a
Memory End 13839005 0x00d32a9d

functions, the most important of which is the issue unit. Each TM has an issue

unit that is in charge of determining which threads in that TM will issue. On each

cycle, within each simulation thread, the TM with the longest number of stall cycles

among its threads is chosen to attempt to issue first in order to ensure fairness of

issue among the different TMs when considering shared resources, such as memory

bandwidth. Within each TM, a similar fairness mechanism is used to attempt to issue

from the thread with the highest stall time first. Experiments have shown that these

fairness mechanisms are effective at balancing out the workload and allowing threads

and TMs to issue approximately the same number of instructions as each other, even

when experiencing heavy resource contention.

As an issue unit attempts to find threads to issue, it will loop through all of the

threads in the corresponding TM. For each thread, it checks the instruction cache to

verify that there would be no bank conflicts in attempting to fetch the instruction.

It then checks all of the available functional units as described in the initialization

of the system, whether they are shared or private units. Once an appropriate unit

is found that is capable of accepting the next instruction for that thread, the issue

unit checks if the register values required to issue that instruction will be available in

time, whether stored in the physical registers, or available through register forwarding.

Upon finding an instruction with a matching unit and available source registers, the

issue unit passes all of the important data to the functional unit to attempt to issue.

Most simple functional units will succeed and schedule a write to the appropriate

34

registers to be completed on the cycle corresponding to the execution time of that

unit. Functional units have the ability to generate their own stalls if there is something

that would prevent an instruction from issuing even if it appears to be ready otherwise.

For example, an L1 cache will often encounter a bank conflict when attempting to

issue, and stall the thread attempting to issue even when the required register values

are available. Assuming the instruction is able to issue, the results of the success are

scheduled, the success is recorded, and the program counter is incremented to the

next instruction. In the case of a failure to issue, the resources are not consumed, but

the failure to issue is recorded, along with as much information as possible about the

reason for the failed issue. When a branch occurs, the instruction in the delay slot is

forced to execute before the program counter takes the branch.

The final step for the cycle is to proceed to the next cycle. Since the simulation

threads are run in parallel, the simulator enforces a global barrier on all simulation

threads at the end of each cycle. This barrier means that all TMs within any given

L2 will be on the same cycle, and all TMs in the system will be on the same cycle. A

looser constraint could be used to speed up simulation times as a global barrier can

be quite expensive, however, the simulation accuracy would be highly degraded by

allowing different TMs to be thousands of cycles apart.

3.5 End of Simulation

The main loop of most TRaX programs uses the atomic increment to assign tasks

among a number of tasks to be completed. Once the number returned by the atomic

increment instruction is greater than the total number of tasks to be completed, the

thread will branch to a HALT instruction. This HALT instruction causes the thread to

no longer attempt to issue in the issue unit. Furthermore, each thread is checked to

see if it is halted, and when all threads in a TM have halted, that TM is considered

halted. HALT should only be called for a thread once all work from atomic increment

assignments has been completed. Once all TMs have halted, the simulation stops

and the frame is considered complete. For animations, the triangles will be moved

by the simulator, the BVH will be rebuilt, and the simulation threads will all start

at the beginning again. However, for the simulations in this dissertation, animations

35

were not used, therefore the simulation finishes after a single frame is rendered. This

simulation methodology is accurate assuming the ray tracer has little to no setup

or other overhead that would not have to be repeated from frame to frame. A side

effect of enforcing the global synchronization at the end of a frame is that threads

that finish the frame before the final thread reaches the end sit idle for some number

of cycles. In practice, the number of idle halted cycles is insignificant to the overall

system performance on scenes of a reasonable size.

Once all threads are found to be halted and the simulation completes, simtrax

generates an image representing the values stored in the frame buffer locations.

In addition, all of the issue statistics are reported along with the framerate given

the current system configuration. Furthermore, area for the hardware configuration

specified is reported, and hit rates for the caches in the system as well as any bank

conflicts when accessing the caches. The final piece of data reported are utilization

numbers for each of the functional units in the system, which is useful for finding

which functional units are highly constrained and for computing power consumption

of the system.

3.6 Example Simulation

This section provides and example of how the simtrax simulator can be used to

explore various hardware configurations through the data gathered. The following

example shows how, through the use of shared functional units, area can be saved

from each TM, resulting in the potential to include more threads on the same sized

device. The simulation parameters used are held constant for both tests except for a

change in the number of functional units, as can be seen in Table 3.3. Holding most

of the parameters constant allows for simple examination of how certain changes

will affect system performance, however, results could potentially vary given different

values for some of the parameters that have been held constant in this example. For

instance, if the instruction caches were under-provisioned to only allow one thread to

issue at a time, then it would be more beneficial to only have one thread per TM.

Both tests here use a simple ray tracing application and render the conference scene

at 512×512.

36

Table 3.3: Example Simulation Configurations
Parameter Config 1 Config 2
Threads per TM 32 32
Instruction Cache 4 x 16 banks 4 x 16 banks
L1 Data Cache 16 kB, 4 banks 16 kB, 4 banks
L2 Data Cache 512 kB, 32 banks 512 kB, 32 banks
Standard Functional Units 32 32
Special Functional Unit 1 1
FPMUL, FPADD, INTMUL 32 8
TM Size 1.11 0.44

As can be seen from the functional unit utilization reported by the simulator in

Figure 3.3, the functional units are underutilized and over-provisioned in the first

example. The numbers for module utilization reported in the figure represent the

percentage of possible issues to that unit that were actually used on average over the

duration of the simulation. The sizes are reported in mm2 and the FPS is determined

by the total clock cycles of the longest running TRaX thread. Despite the large

difference in the number of units used in these two examples, the overall system

performance remains quite stable with an overall frame rate reduction of less than

1%. These simulations were run using the following command with the only variations

coming in the modification of the config file as detailed in Table 3.3:

./simtrax --num-regs 36 --num-thread-procs 32 --threads-per-proc 1 \\

--num-cores 2 --width 512 --height 512 --config-file configs/example.config \\

--num-icaches 4 --num-icache-banks 16 --num-l2s 1 \\

--view-file views/conference.view --model test_models/conference.obj \\

--light-file lights/conference.light --load-assembly assembly/prog5_sol.s

The results and architectural explorations reported in Chapter 5 use the same

simulation technique and use the reported statistics for comparison of different con-

figurations.

37

Configuration 1 | Configuration 2

Module Utilization | Module Utilization

|

FP AddSub: 8.01 | FP AddSub: 32.04

FP MinMax: 6.95 | FP MinMax: 6.94

FP Compare: 4.26 | FP Compare: 4.26

Int AddSub: 19.55 | Int AddSub: 19.54

FP Mul: 8.49 | FP Mul: 33.97

Int Mul: 0.02 | Int Mul: 0.10

FP InvSqrt: 5.87 | FP InvSqrt: 5.87

FP Div: 10.04 | FP Div: 10.05

Conversion Unit: 0.02 | Conversion Unit: 0.02

|

Core size: 1.2891 | Core size: 0.6134

L2 size: 2.6500 | L2 size: 2.6500

1-L2 size: 2.6500 | 1-L2 size: 2.6500

2-core chip size: 5.2282 | 2-core chip size: 3.8768

FPS Statistics: | FPS Statistics:

Total clock cycles: 49599916 | Total clock cycles: 49603956

FPS assuming 1000MHz clock: 20.1613 | FPS assuming 1000MHz clock: 20.1597

Figure 3.3: Example Functional Unit Utilization

CHAPTER 4

PROGRAMMING TRAX

TRaX can be thought of as a general purpose CPU from the point of view of the

programmer that just happens to run a number of copies of its program concurrently.

Parallelism is supported through a few limited primitives, and the fact that every

thread is loaded with the same program on startup and executes from the same

point. The programmer benefits from thinking about the architecture from the SPMD

model, where work assignments and thread specialization are provided within the

same program. The SPMD programming model allows a single program to control a

large swarm of small computers.

The real benefit to TRaX is that the programmer does not need to think as

much about how the work will be divided among the hardware threads since there is

much less of a penalty for divergent branches among threads than other programming

models (e.g., SIMD). TRaX memory is loaded at startup by the host CPU with the

relevant scene data (including acceleration structure) and the programmer must take

this into account when writing a program for TRaX. In order to support a variety

of ray tracers, a variety of constants and pointers to important data structures

are placed at known locations towards the front of the memory space. Memory

coherence is not provided except through explicit programmer control by evicting

cache lines that are expected to have been modified by other threads. By pinning

data to the L2 cache through explicit evictions, coherence can be provided to all

of the L1s that share the L2 in a cluster. While this limits TRaX’s ability as

a general purpose compute engine, it allows for the memory system to ignore the

need for expensive invalidate messages. The TRaX instruction set architecture (ISA)

provides all of the standard mathematical and logical operations that are common

to reduced instruction set computer (RISC) architectures, including register and

39

immediate versions of most arithmetic and bitwise instructions. In addition, a number

of nonstandard instructions have been added to support parallelism, including an

atomic increment instruction to assist with work assignments. The programming

environment encapsulates some intrinsics to provide direct access for the programmer

to use the special functionality available in the TRaX ISA.

In designing the programming model for TRaX, the primary motivation was a

desire to make parallel ray tracing code as easy to develop as possible. Due to

the naturally parallel nature of naive ray tracing algorithms, we decided to target a

simple ray tracer with a fixed-depth ray tree rather than a fully recursive ray tracer,

or one using packets. Packets have been shown to effectively increase SIMD efficiency,

particularly on CPU-style SIMD architectures [56, 41]. Another approach to SIMD

ray tracing is the use of a multi-BVH [57, 58], which allows for multiple traversal

decisions to be processed in parallel. In contrast, TRaX is designed to naturally allow

for the behavior that ray tracing exhibits naturally, that of unpredictable branching

among a group of rays. These SIMD acceleration techniques work best for primary

viewing rays and sometimes shadow rays, while the major visual advantages in ray

tracing come from the less predictable secondary rays. As TRaX is designed to use

only independent threads, the benefits from packets and multi-BVHs would be less

than for SIMD architectures. The result of these decisions is that code for TRaX

is written as a single thread of execution, but with an atomic increment being used

to retrieve new ray, pixel, or sample assignments in the outer loop. This allows the

exact same code to run on every single thread, but for each thread to execute on

independent final writeback positions in screenspace.

There are two fundamentally different compilation techniques presented here and

used in this dissertation. The first uses a large register file to implement a stack as

explained in Section 4.2. The second scheme, presented in Section 4.3, opts to reduce

the size of the register file by using a small local memory to store the call frames.

This allows the programming environment to set up the memory to correspond to

the initial state at which the ray tracer should begin execution.

40

4.1 TRaX Helper Functions

In order to help programmers to more easily target the TRaX architecture with

separate local and global memory spaces, we provide a number of helper functions,

most of which use compiler intrinsics to generate special instructions that correspond

to the operations that should be performed. Table 4.1 lists the most useful of these

functions and describes how they are used and what each one does. A different

header file is provided for the TRaX target as well as the native target used for rapid

development. More about these two targets can be found in Sections 4.3 and 4.4. In

order to more easily support both targets, and to allow the native target to function

with the same global memory space as the TRaX target, programs written for TRaX

must use void trax main() instead of int main().

4.2 Register Stack

The first backend for TRaX compilation does not use the standard LLVM [59]

technique for stack management and instead opts to place stack data in the register

file. In order to support register-based stacks, we provide instructions that allow

for reading and writing the register file using one register value as a pointer to a

register and another register value as an offset into the register file. When performing

compilation for register stacks, the compiler attempts to keep as many values in

registers as possible instead of pushing those values on the stack. As a result of

using registers for the stack and keeping values in registers longer, the register stack

compilation results in a much higher quantity of registers required in the architecture,

sometimes exceeding even 256 registers in some cases.

4.3 LLVM Backend

In order to reduce the number of required registers in the architecture, we also

have a backend for TRaX in the standard LLVM infrastructure. This backend uses

LLVM 2.9, and is based on the Microblaze backend, since much of the instruction set

was similar, and it allowed for leveraging an existing backend to ensure compatibility

with LLVM. Microblaze [60] is a simple reduced instruction set computer (RISC)

architecture built as a soft-core microprocessor available from Xilinx for synthesis and

use on their field programmable gate arrays (FPGA). This is useful as a target because

41

Table 4.1: Helper Functions
Function Return Arguments Description

loadi int int base, int offset Load global address as an integer
loadf float int base, int offset Load global address as a float
storei void int value, int base, int offset Store an integer to global address
storef void float value, int base, int offset Store a float to global address
trax getid int int value Returns an id based on value

1=threadID,2=TMID,3=L2ID
atomicinc int int global reg Returns value of global reg and adds 1 after
global reg read int int global reg Returns value of global reg
min float float left, float right Returns the minimum of left and right
max float float left, float right Returns the maximum of left and right

invsqrt float float value Returns 1√
value

trax rand float Returns a random value between 0 and 1

GetXRes int Returns screen width in pixels
GetYRes int Returns screen height in pixels
GetInvXRes float Returns inverse screen width in pixels
GetInvYRes float Returns inverse screen height in pixels
GetFrameBuffer int Returns the address of the frame buffer
GetBVH int Returns the address of the BVH
GetMaterials int Returns the address of the materials
GetCamera int Returns the address of the camera
GetBackground int Returns the address of the background color
GetLight int Returns the address of the light
GetStartTriangles int Returns the address of the triangles
GetNumTriangles int Returns the number of triangles
GetThreadID int Returns the thread ID
GetCoreID int Returns the TM ID
GetL2ID int Returns the L2 ID

different architectural configurations are available for Microblaze, so the backend

already has to support hardware variations. The compiler front end that is used to

generate LLVM bytecode is llvm-gcc. A benefit to using this workflow is that branch

delay slot filling was implemented in the Microblaze backend and therefore the TRaX

backend also includes it. Previous to the current compiler, we used a custom compiler

backend that would manage call stacks in registers, but it had become unruly and

difficult to update. This newer backend was developed partially for use in a course

taught in the fall of 2011, to expose more students to the TRaX architecture. In

this class, a group of around 8 students were able to implement a basic path tracer

for TRaX, followed by a variety of additional projects. A few of the class projects

include beam tracing, photon mapping, and metropolis light transport, showing that

TRaX can be used for more advanced rendering techniques than those that will be

presented here.

42

4.4 Functional Simulation

While the TRaX simulator is a useful tool for analyzing the behavior of the

TRaX architecture, any cycle accurate simulator that gathers many useful data about

performance will be much slower than the hardware it simulates. In order to keep

programmers from having to wait 4 or more hours between compiling their code and

getting a result back to see if it was functional, a functional simulator was desired.

Since the TRaX programming model is a naive single thread that gets assignments

from atomic increments, a custom native implementation of the functionality of the

TRaX intrinsics is provided that could be optionally included when compiling any

TRaX code. In order to have the global memory behave the same way in functional

simulation, we leverage the existing memory loading functionality from the TRaX

simulator. The result is that a programmer can compile code for both the TRaX

target, and a functional simulation target at the same time and use the functional

simulation target while developing a test for the general functionality of the code with

a much more rapid feedback loop. The examples we provided in the class included

a Makefile that provides both build targets. A selection of these examples is also

published with the public release of simtrax.

4.5 Example TRaX Programs

Figure 4.1 shows a simple gradient fill program written for TRaX. This example

shows how the atomicinc() intrinsic should be used to allow thread assignments

to be distributed among the large number of threads in the system. In the gradient

example, the workload is naturally balanced among the pixels, however, in other cases

it is important to remember that work assignments should be small enough to allow

the system to dynamically balance the workload across all the threads in the system.

The other main interesting part of this example is the usage of built-in functions to

load the screen height and width from global memory and the use of the storef()

intrinsics to write to the frame buffer in global memory.

Due to the code length of a full path tracer, only the main function of the ray tracer

is included in Figure 4.2. The important differences when compared with the simple

gradient example include many more pointers being loaded from global memory in

the set up. It should be noted that the ray generation function itself does not require

43

#include "trax.hpp"

// Only include stdio for printf on the non-trax version
#if TRAX==0
#include <stdio.h>
#endif

// Utility function to store a color at a pixel offset in the frame buffer
inline void StorePixel(const int &fb, const int &pixel, const float &r,

const float &g, const float &b) {
storef(r, fb + pixel*3, 0);
storef(g, fb + pixel*3, 1);
storef(b, fb + pixel*3, 2);

}

void trax_main()
{

// Load the pointer to the frame buffer in global memory
int framebuffer = GetFrameBuffer();

// Load the screen size
int width = GetXRes();
int height = GetYRes();

for (int pixel = atomicinc(0); pixel < width * height;
pixel = atomicinc(0)) {

// Store a color based on screen location
int i = pixel % height;
int j = pixel / width;
StorePixel(framebuffer, pixel, (float)j/height, (float)i/width, 0.0f);

}

// Conditional to only execute the following on the CPU version
#if TRAX==0

printf("Thread %d one drawing.\n", trax_getid(1));
#endif
}

Figure 4.1: Gradient Fill Example

44

int trax_main(){
BoundingVolumeHierarchy bvh(loadi(0, 8)); // Set BVH pointer
PointLight light = loadLightFromMemory(loadi(0, 12)); // Load light
int xres = loadi(0, 1); int yres = loadi(0, 4); // Load screen size
float inv_width = loadf(0, 2); float inv_height = loadf(0, 5);
int start_fb = loadi(0, 7); // Frame Buffer write location
int start_matls = loadi(0, 9); // Materials pointer
int num_samples = loadi(0, 17); // Load constants
int max_depth = loadi(0, 16);
Image image(xres, yres, start_fb); // Configure write interface
PinholeCamera camera(loadi(0, 10)); // Load camera

for(int pix = atomicinc(0); pix < xres*yres; pix = atomicinc(0)) {
// Compute x and y based on work assignment
int i = pix / xres;
int j = pix % xres;
Color result(0.f, 0.f, 0.f); // Background color
float x = 2.0f * (j - xres/2.f + 0.5f)/xres; // center in pixel
float y = 2.0f * (i - yres/2.f + 0.5f)/yres; // center in pixel
for(int i=0; i < num_samples; i++) { // Number of samples per pixel

Color attenuation(1.f, 1.f, 1.f); // start with full attenuation
int depth = 0; Ray ray;
if(num_samples == 1)

camera.makeRay(ray, x, y); // Create ray
else { // Random sample within the pixel

float x_off = (trax_rand() - 0.5f) * 2.f;
float y_off = (trax_rand() - 0.5f) * 2.f;
x_off *= inv_width;
y_off *= inv_height;
camera.makeRay(ray, x + x_off, y + y_off); // Offset ray

}
while(depth++ < max_depth) { // stop when max_depth is reached

HitRecord hit(100000.f);
Color hit_color;
Vector normal;
Vector hit_point;
bvh.intersect(hit, ray); // intersect with scene
// Compute color contribution for this ray
result += shade(hit, ray, bvh, light, start_matls, hit_point,

normal, hit_color) * attenuation;
if(!hit.didHit()) break; // stop if nothing hit
ray.org = hit_point;
ray.dir = randomReflection(normal); // reflect on hit
attenuation *= hit_color; // path loses energy on each bounce

}
}

result /= num_samples; // normalize result based on sample count
image.set(i, j, result); // write color to image

}
}

Figure 4.2: Path Tracer Example

45

any call to global memory since it uses the camera values that are stored locally at

each thread as well as the pixel assignment currently being processed by the thread.

The bvh.intersect() function performs all of the global loads required in order for

the thread to determine which object should be considered for shading from among

all of those in the scene. The shade() function uses the hit information as well as

the light and material properties to compute the color that should be accumulated

into the frame buffer for the current ray. This path tracer then computes a random

direction to sample for the following ray, and attenuates that ray’s contribution to

the final pixel color. The final value to be written to the frame buffer is accumulated

locally in thread local memory and registers, only to be written back a single time

per color channel for each pixel. For an image of 512×512 pixels, only 786,432 writes

will be performed across the entire system per frame. This small number of global

memory stores allows the TRaX memory system to write around the cache for all

writes, thereby eliminating all cases where frame buffer writes would cause other

data values to be evicted from the caches.

4.6 Ray Tracing Software

In the results presented in this dissertation a number of iterations of essentially

the same ray tracer were used. Some of the test programs are written directly in

assembly language. Others are written in a higher level language designed for our

architecture. Many TRaX programs use header based extensions inspired by the

RenderMan shading language [61] to allow for ease of writing a ray tracing application.

Some high level code was compiled using a custom LLVM backend that interprets

LLVM bytecode independent of the LLVM tool flow, while other high level code was

compiled using an LLVM backend functioning within the LLVM tools. The results

in Section 5.1 use both hand coded assembly as well as the custom LLVM backend

outside of the LLVM tools. Section 5.2 uses the LLVM backend outside of the LLVM

tools, while Section 5.3 uses the LLVM backend inside of the LLVM tools.

For Section 5.1, two different ray tracing systems were used as follows.

46

• Whitted-Style Ray Tracer: This implements a recursive ray tracer that

provides various shading methods, shadows from a single point light source and

BVH traversal. It is written in thread processor assembly language.

• Path Tracer: This application is written in C++ with TRaX library exten-

sions. It computes global illumination in the scene using a single point light

source and using Monte-Carlo sampled Lambertian shading [6].

4.6.1 Shading Methods

All of the ray tracers presented in this work implement two of the most commonly

used shading methods in ray tracing: simple diffuse scattering, and Phong lighting

for specular highlights [62, 63]. We also include simple hard shadows from a point

light source. Shadow rays are generated and cast from each intersected primitive

to determine if the hit location is in shadow (so that it is illuminated only with an

ambient term) or lit (so that it is shaded with ambient, diffuse and Phong lighting).

Diffuse shading assumes that light scatters in every direction equally, and Phong

lighting adds specular highlights to simulate shiny surfaces by increasing the intensity

of the light if the view ray reflects straight into a light source. These two shading

methods increase the complexity of the computation per pixel, increasing the demand

on our FUs. Phong highlights especially increase complexity, as they involve taking

an integer power, as can be seen in the Blinn-Phong lighting model [64]:

Ip = kaia +
∑

lights

(kd(L ·N)id + ks(R · V)αis)

The Ip term is the shade value at each point which uses constant terms for the

ambient ka, diffuse kd, and specular ks components of the shading. The α term is

the Phong exponent that controls the shininess of the object by adjusting the size of

the specular highlights. The i terms are the intensities of the ambient, diffuse, and

specular components of the light sources.

4.6.2 Procedural Texturing

We also implement procedural textures in our ray tracer. That is, textures which

are computed based on the geometry in the scene, rather than an image texture which

47

is simply loaded from memory. Specifically, we use Perlin noise with turbulence [65,

66]. These textures are computed using pseudo-random mathematical computations

to simulate natural materials which adds a great deal of visual realism and interest to a

scene without the need to store and load complex textures from memory. The process

of generating noise is quite computationally complex. First, the texture coordinate on

the geometry where the ray hit is used to determine a unit lattice cube that encloses

the point. The vertices of the cube are hashed and used to look up eight precomputed

pseudo-random vectors from a small table. For each of these vectors, the dot product

with the offset from the texture coordinate to the vector’s corresponding lattice point

is found. Then, the values of the dot products are blended using either Hermite

interpolation (for classic Perlin noise [65]) or a quintic interpolant (for improved

Perlin noise [67]) to produce the final value. More complex pattern functions such

as turbulence produced through spectral synthesis sum multiple evaluations of Perlin

noise for each point shaded. There are 672 floating point operations in our code

to generate the texture at each pixel. We ran several simulations comparing the

instruction count of an image with and without noise textures. We found that there

are on average 50% more instructions required to generate an image where every

surface is given a procedural texture than an image with no textures.

Perlin noise increases visual richness at the expense of computational complexity,

while not significantly affecting memory traffic. The advantage of this is that we can

add more FUs at a much lower cost than adding a bigger cache or more bandwidth.

Conventional GPUs require an extremely fast memory bus and a very large amount of

RAM for storing textures [68, 69]. Some researchers believe that if noise-based proce-

dural textures were well supported and efficient, that many applications, specifically

video games, would choose those textures over the memory-intensive image-based

textures that are used today [70]. An example of a view of the Sponza scene rendered

with a TRaX implementation of Perlin noise-based textures can be seen in Chapter 5.

4.6.3 Path Tracer Application

In order to explore the ability of our architecture to maintain performance in the

face of incoherent rays that do not respond well to packets, we built a path tracer

48

designed so that we could carefully control the coherence of the secondary rays. Our

path tracer is written in the TRaX language described previously and is designed

to eliminate as many variables as possible that could change coherence. We use a

single point light source, and limit incoherence to Monte-Carlo sampled Lambertian

shading with no reflective or refractive materials [6]. Every ray path is traced to

the same depth: there is no Russian Roulette or any other dynamic decision making

that could change the number of rays cast. This is all to ensure that we can reliably

control secondary ray coherence for these experiments. A more fully functional path

tracer with these additional techniques could be written using the TRaX programming

language, and we expect it would have similar performance characteristics.

Each sample of each pixel is controlled by a simple loop. The loop runs D times,

where D is the specified max depth. For each level of depth we cast a ray into the

scene to determine the geometry that was hit. From there, we cast a single shadow

ray towards the point light source to determine if that point receives illumination.

If so, this ray contributes light based on the material color of the geometry and the

color of the light. As this continues, light is accumulated into the final pixel color

for subsequent depth levels. The primary ray direction is determined by the camera,

based on which pixel we are gathering light for. Secondary (lower depth) rays are

cast from the previous hit point and are randomly sampled over a cosine-weighted

hemisphere, which causes incoherence for higher ray depths.

Secondary rays are randomly distributed over the hemisphere according to a

bidirectional reflectance distribution function (BRDF) [71, 72]. To compute a cosine-

weighted Lambertian BRDF, a random sample is taken on the area of a cone with

the major axis of the cone parallel to the normal of the hit geometry and the vertex

at the hit point. As an artificial benchmark, we limit the angle of this cone anywhere

from 0 degrees (the sample is always taken in the exact direction of the normal) to

180 degrees (correct Lambertian shading on a full hemisphere). By controlling the

angle of the cone we can control the incoherence of the secondary rays. The wider the

cone angles the less coherent the secondary rays become as they are sampled from a

larger set of possible directions. The effect of this can be seen in Figure 4.3.

49

Figure 4.3: The Cornell Box Scene Showing the Visual Change as the Sampling
Angle Increases in our Path Tracer. Starting on the Left: 0 Degrees, 30 Degrees, 60
Degrees, and 180 Degrees on the Right.

CHAPTER 5

EVALUATION OF RAY TRACING ON

TRAX123

In order evaluate a variety of configurations of the TRaX architecture, three

related but distinct explorations will be presented in this chapter. The three stages

of exploration of the TRaX architecture are as follows:

• TM Exploration: A TM centric view assuming perfect chip-wide scaling.

The goal is to discover which kind of TM configurations are in the realm of

reasonable to be used as a basis for later studies.

• Chip Exploration: Based on the same TM principles, adding chip-wide details

in the simulation results. The goal is to fill out enough details in the chip-wide

system to report the expected performance of a high-performance ray tracing

processing unit.

• System on Chip: A full TRaX chip designed as a low-power IP block that

could be used in a mobile SoC. The goal of this design is to show the potential

for ray tracing on current, and future mobile devices.

The primary metric used in this work to measure the effectiveness of a ray tracing

system is the number of rays per second (RPS, or MRPS for millions, a common

1This chapter is modified with permission from J. Spjut, A. Kensler, D. Kopta, and E. Brunvand,
“TRaX: A multicore hardware architecture for real-time ray tracing,” IEEE Transactions on
Computer-Aided Design, vol. 28, no. 12, pp. 1802 – 1815, Copyright c⃝2009 IEEE.

2This chapter is modified with permission from D. Kopta, J. Spjut, E. Brunvand, and A. Davis,
“Efficient MIMD architectures for high-performance ray tracing,” in IEEE International Conference
on Computer Design (ICCD), Copyright c⃝2010 IEEE.

3This chapter is modified with permission from J. Spjut, D. Kopta, E. Brunvand, and A. Davis,
“A mobile accelerator architecture for ray tracing,” in 3rd Workshop on SoCs, Heterogeneous
Architectures and Workloads (SHAW-3), Copyright c⃝2012.

51

magnitude for these studies). Estimates for scenes with moderately high quality

global lighting range from 4M to 40M rays/image [45, 2, 44]. At even a modest

real-time frame rate of 30Hz, this means that performance in the range of 120 to

1200 MRPS will be desirable. Throughout this chapter, the simulated clock rates

are based on timings given by synthesis of actual functional units. When 500 MHz

is used, it is because the cell libraries were for older processes or designed for lower

power, while the 1 GHz clock rates assume newer cell libraries with a variety of low

power and high performance cells determining the functional unit latency. Clock rates

are reported along with each set of results.

5.1 Design of a Threaded Multiprocessor

The objective of the first evaluation is to explore the design configuration of a

single TM. Issues include how many threads should be placed within a single TM,

the sizes and configurations of the caches, allocation and sharing of functional units,

and other features of the basic MIMD-SPMD thread multiprocessor. For the TM

exploration, the number of threads in each TM was varied from 16 to 128 using

powers of 2. These results show that with 32 thread processors per TM, close to 50%

of the threads can issue on average in every cycle for a variety of different scenes

using an assembly-coded Whitted-style ray tracer [47] and a path tracer coded in a

C-like language [46]. Note that both of these ray tracers use an extended register file

that is used for the program call stack, resulting in an estimated register file size of

128 registers per thread. In reality, the ray tracing application used more registers

for this study, but we assume that a better compiler might be able to reduce register

usage to only 128 including the stack registers.

The resulting multiple-thread TM can be repeated on a multi-TM chip because of

the independent nature of the computation threads. Performance for the TM explo-

ration is thus estimated by performing a simulation of a single TM, and extrapolating

performance given linear scaling to the number of TMs that would be able to fit in the

given chip size. We evaluate performance of the TM architecture using two different

ray tracing applications: a recursive Whitted-style ray tracer [4, 5, 6] that allows us to

compare directly to other hardware ray tracing architectures, and a path tracer [8, 73]

52

that allows us to explore how the TRaX architecture responds to incoherent secondary

rays, arguably the most important types of rays when considering a ray tracer [46].

This work does not analyze TRaX’s ability to handle dynamically changing scenes.

We assume that the necessary data structures are updated on the host machine

as needed for these experiments, so the performance we measure is for rendering

a single frame. We have, however, explored the possibility of dynamic scene updating

on the TRaX architecture using techniques such as tree rotations [74]. Results for

tree rotations on TRaX show high issue rates at the expense of increased memory

coherence traffic. Other studies have shown that it is also possible to rebuild slightly

lower quality BVHs on GPUs [75, 76, 77]. These rebuilds should also work efficiently

on TRaX-style architectures, and may be even more efficient with MIMD execution.

The test scenes used for this first exploration, seen in Figure 5.1 with some basic

performance numbers in Table 5.1, exhibit some important properties. The Cornell

Box (left) is important because it represents the simplest type of scene that would be

rendered. It gives us an idea of the maximum performance possible with the TRaX

ray tracing hardware. Sponza (middle), on the other hand, has over 65000 triangles

and uses a BVH with over 50000 nodes. Also included is a version of the Sponza scene

displaying our procedural noise texturing, the details of which can be found in the

journal version of this work [48]. The Conference Room scene (right) is an example

of a reasonably large and complex scene with around 300k triangles. This is similar

to a typical video game scene from a few years ago. Some more complicated scenes

have results on different configurations that can be found in Sections 5.2 and 5.3.

5.1.1 Multi-TM Chip

In order to focus this first exploration solely on TM performance, system wide

features, such as the L2 cache and atomic increment, were not modeled explicitly, and

instead were approximated by assumed hit rates (see Section 5.1.3 for more details).

All misses in the L1 cache were treated as a fixed latency to memory intended to

approximate the average L2 latency. The modeled latency to L2 was on the order of

twenty times the latency of L1 hits. While not entirely accurate, these approximations

allow for quicker experimentation within the TM. Results based on explicit chip-wide

simulations can be found in Section 5.2.

53

Figure 5.1: Test Scenes Rendered on Our TRaX Architectural Simulator

5.1.2 Whitted-Style Ray Tracer

This section describes a basic recursive ray tracer that provides us with a baseline

that is easily compared to other published results, as described in Section 4.6. In

addition to controlling the depth and type of secondary rays, another parameter

that can be varied to change its performance is the size of the tiles assigned to each

thread to render at one time. The first iteration of the software would split the

screen into 16×16 pixel squares and each thread would be assigned one tile to render,

similar to a packet ray tracer. While this is a good idea for reducing the number of

atomic increments, we found that it did not produce the best performance. Instead,

for the results in this section, single pixels are assigned to threads in order. This

seemingly minor change was able to increase the coherence of consecutive primary

rays (putting them closer together in screen space), and make the cache hit rate

much higher since simultaneously executing threads are placed closer together in

screen space. The increased coherence causes consecutive rays to hit much of the

same scene data that have already been cached by recent previous rays, as opposed

to each thread caching and working on a separate part of the scene, resulting in

interthread cache conflicts. The pixels are computed row-by-row straight across the

image, though more sophisticated space filling methods such as a Z curve have the

potential to further increase the ray tracing performance by contributing to memory

access locality resulting in better cache hit rates. The important finding here is that,

for threads sharing a data cache, simultaneous ray assignments should be as close

together as possible to increase the cache line reuse of that data cache.

54

Table 5.1: Scene Data with Results for 1 and 16 TMs, Each with 32 Thread
Processors, and Phong Shading Estimated at 500MHz

Scene Triangles BVH Nodes FPS (1 TM) FPS (16 TMs)
conference 282664 266089 1.4282 22.852
sponza 66454 58807 1.1193 17.9088
cornell 32 33 4.6258 74.012

5.1.3 Design Exploration

For each simulation we render one frame in one TM from scratch with cold

caches. The instructions are assumed to be already in the instruction cache since

they do not change from frame to frame. The results we show are therefore an

accurate representation of changing the scene memory on every frame and requiring

invalidating the caches. The results are conservative because even in a dynamic scene,

much of the scene might stay the same from frame to frame and thus remain in the

cache. Statistics provided by the simulator include total cycles used to generate a

scene, functional unit utilization, thread utilization, thread stall behavior, memory

and cache bandwidth, memory and cache usage patterns, and total parallel speedup,

as described in Chapter 3.

Nearly all hardware features of the TRaX architecture can be varied in our

simulations, including clock rate, latency of all units, and quantity and organization

of the hardware components. For this exploration, ray tracing code was executed

on simulated TRaX TMs having between 1 and 256 thread processors, with issue

widths of all function units except memory varying between 1 and 64 (memory was

held constant at single-issue). Images may be generated for any desired screen size,

though a size of 1024x768 is used for this study. The primary goal for the first design

phase is to determine the optimal allocation of transistors to thread-level resources,

including functional units and thread state, in a single TM to maximize utilization

and overall parallel speedup. The study in Section 5.2 includes better memory models

for memory and cache usage to feed the parallel threads (and parallel TMs at the

chip level).

55

5.1.4 Functional Units

We first chose a set of functional units to include in our machine-level language,

shown in Table 5.2. This mix was chosen by separating different instruction classes

into separate dedicated functional units. We implemented our ray casting benchmarks

using these available resources, then ran numerous simulations varying the number of

threads and the issue width of each functional unit. All execution units are assumed

to be pipelined including the memory unit. The area estimates for these functional

units can be found in Table 5.3.

Table 5.2: Default Functional Unit Mix (500MHz Cycles)
Unit Name Number of units Latency (cycles)
IntAddSub 1 / thread 1
IntMul 1 / 8 threads 2
FPAddSub 1 / thread 2
FPMul 1 / 8 threads 3
FPComp 1 / thread 1
FPInvSqrt 1 / 16 threads 15
Conversion 1 / thread 1
Branch 1 / thread 1
Cache 1 (mult. banks) varies

Table 5.3: Area Estimates (Prelayout) for Functional Units Using Artisan CMOS
Libraries and Synopsys. The 130nm Library is a High Performance Cell Library and
the 65nm is a Low Power Cell Library. Speed is Similar in Both Libraries.

Area (µm2)
Resource Name 130nm 65nm
2k×16byte cache (4 Banks / Read ports) 1,527,5719 804,063
128×32 RF (1 Write 2 Read ports) 77,533 22,000(est.)
Integer Add/Sub 1,967 577
Integer Multiply 30,710 12,690
FP Add/Sub 14,385 2,596
FP Multiply 27,194 8,980
FP Compare 1,987 690
FP InvSqrt 135,040 44,465
Int to FP Conv 5,752 1,210

56

Each thread receives its own private FP Add/Sub execution unit. FP multiply

is a crucial operation as cross and dot products, both of which require multiple FP

multiplies, are common in ray tracing applications. Other common operations such

as blending also use FP multiplies. The FP multiplier is a shared unit because of its

size, but due to its importance, it is only shared among a few threads. The FP inv

functional unit handles divides and reciprocal square roots. The majority of these

instructions are required by the box test algorithm, which issues three total FP inv

instructions. This unit is very large and less frequently used hence it is shared among

a greater number of threads. It would also be possible to include a custom noise

function as a shared functional unit that would allow the rapid generation of gradient

noise used for procedural texturing (see Section 4.6.2), though that is not the focus

of this section.

5.1.5 Single TM Performance

Many millions of cycles of simulation were run to characterize our proposed

architecture for the ray-tracing application. We used frames per second as our

principle metric extrapolated from single-TM results to multi-TM estimates. This

evaluation is conservative in many respects since much of the scene data required

to render the scene would likely remain cached between consecutive renderings in a

true 30-fps environment. However, it does not account for repositioning of objects,

light sources, and viewpoints. The results shown here describe an analysis based on

simulation.

We target 200mm2 as a reasonable die size for a high-performance graphics pro-

cessor. We used a low power 65nm library to conservatively estimate the amount of

performance achievable in a high density, highly utilized graphics architecture. We

also gathered data for high performance 130nm libraries as they provide a good com-

parison to the Saarland RPU [40, 78] and achieve roughly the same clock frequency

as the low power 65nm libraries.

Basic functional units, including register files and caches, were synthesized, placed

and routed using Synopsys and Cadence tools to generate estimated sizes. These

estimates are conservative, since hand-designed execution units will likely be much

smaller. We use these figures with simple extrapolation to estimate the area required

57

for a certain number of TMs per chip given replicated functional units and necessary

memory blocks for thread state. Since our area estimates do not include an L2 cache

or any off-chip I/O logic, our estimates in Table 5.4 and Table 5.5 are limited to

150mm2 in order to allow room for the components that are unaccounted for.

For a ray tracer to be considered to achieve real-time performance, it must have a

frame rate of around 30 fps. The TRaX architecture is able to render the conference

scene at 31.9 fps with 22 TMs on a single chip at 130nm. At 65nm with 79 TMs on

a single chip performance jumps to 112.3 fps.

The number of threads able to issue in any cycle is a valuable measure of how

well we are able to sustain parallel execution by feeding threads enough data from

the memory hierarchy and offering ample issue availability for all execution units.

Figure 5.2 shows, for a variable number of threads in a single TM, the average

percentage of threads issued in each cycle. For 32 threads and below, we issue nearly

50% of all threads in every cycle on average. For 64 threads and above, we see that

the issue rate drops slightly, ending up below 40% for the 128 threads rendering the

Sponza scene, and below 30% for the Conference scene. Figure 5.3 shows how TM

performance varies as the number of issue ports is changed. We conclude that at least

two ports are required to have acceptable performance, but any more than four ports

are unnecessary.

Considering a 32 thread TM with 50% of the threads issuing each cycle, we have

16 instructions issued per cycle per TM. In the 130nm process, we fit 16 to 22 TMs on

a chip. Even at the low end, the number of instructions issued each cycle can reach

up to 256. With a die shrink to 65 nm we can fit more than 64 TMs on a chip allowing

the number of instructions issued to increase to 1024 or more. Since we never have

to flush the pipeline due to incorrect branch prediction or speculation, we potentially

achieve an average IPC of more than 1024. Even recent GPUs with many concurrent

threads issue a theoretical maximum IPC of around 256 (128 threads issuing 2 floating

point operations per cycle).

Another indicator of sustained performance is the average utilization of the shared

functional units. The FP inv unit shows utilization at 70% to 75% for the test scenes.

The FP multiply unit has 50% utilization and integer multiply has utilization in the

58

Table 5.4: TRaX Area Estimates to Achieve 30 FPS on Conference. These Estimates
Include Multiple TMs, but not the Chip-Wide L2 Cache, Memory Management, or
Other Chip-Wide Units.

Threads/TM TM Area mm
2 Single # of Die Area mm

2

130 nm 65 nm TM FPS TMs 130 nm 65 nm
16 4.73 1.35 0.71 43 203 58
32 6.68 1.90 1.42 22 147 42
64 10.60 2.99 2.46 15 138 39
128 18.42 5.17 3.46 9 166 47

Table 5.5: Performance Comparison for Conference and Sponza Assuming a Fixed
Chip Area of 150mm2, not Including the L2 Cache, Memory Management, and Other
Chip-Wide Units.

Threads/TM # of TMs Conference FPS Sponza FPS
130 nm 65 nm 130 nm 65 nm 130 nm 65 nm

16 32 111 22.7 79.3 17.7 61.7
32 22 79 31.9 112.3 24.1 85.1
64 14 50 34.8 123.6 24.0 85.4
128 8 29 28.2 100.5 17.5 62.4

25% range. While a detailed study of power consumption was not performed in this

work, we expect the power consumption of TRaX to be similar to that of commercial

GPUs.

We varied data cache size and issue width to determine an appropriate configu-

ration offering high performance balanced with reasonable area and complexity. For

scenes with high complexity a cache with at least 2K lines (16-bytes each) satisfied

the data needs of all 32 threads executing in parallel with hit rates in the 95% range.

We attribute much of this performance to low cache pollution because all stores go

around the cache. Although performance continued to increase slightly with larger

cache sizes, the extra area required to implement the larger cache meant that total

silicon needed to achieve 30fps actually increased beyond a 2K L1 data cache size.

To evaluate the number of read ports needed, we simulated a large (64K) cache with

between 1 and 32 read ports. Three read ports provided sufficient parallelism for 32

threads. This is implemented as a four-bank direct mapped cache.

59

 0

 10

 20

 30

 40

 50

 60

16 32 64 128

%
 Is

su
ed

Number of Threads

Cornell
Sponza

Conference

Figure 5.2: Thread Performance (% Issued)

 0

 1

 2

 3

 4

 5

 6

1 2 3 4

FP
S

Cache Issue Width

Cornell
Sponza

Conference

Figure 5.3: Single TM Performance as Cache Issue Width is Varied

60

The L2 cache was not modeled directly in these experiments. Instead, a fixed

latency of 20 cycles was used to conservatively estimate the effect of the L2 cache.

The simulations in this section show memory bandwidths between L1 cache and the

register file that range from 10-100 GB/s depending on the size of the scene. The

L2-L1 bandwidth ranges from 4-50 GB/s, and DRAM-L2 from 250Mb/s to 6GB/s

for reads. These clearly cover a broad range depending on the size and complexity of

the scene. The instruction caches are modeled as 8 kbyte direct mapped caches, but

because the code size of our current applications is small enough to fit in those caches,

we assume they are fully warmed and that all instruction references come from those

caches. Sections 5.2 and 5.3 do not make this assumption, but because of the small

code size the L1 I-cache has little impact on processing times.

Comparing against the Saarland RPU [40, 78], TRaX has higher frame rates in the

same technology, while also providing enhanced flexibility by allowing all parts of the

ray tracing algorithm to be programmable instead of just the shading computations.

In contrast, the RPU had fixed function acceleration structure traversal restricted to

only using KD trees. The programmability in TRaX allows the application to use (for

example) any acceleration structure and primitive encoding, and allows the hardware

to be used for other applications that share the thread-rich nature of ray tracing.

A ray tracing application implemented on the cell processor [29] shows moderate

performance and demonstrates the limitations of an architecture not specifically

designed for ray tracing. In particular, TRaX allows for many more threads executing

in parallel and trades off strict limitations on the memory hierarchy. The effect can be

seen in the TRaX performance at 500MHz compared to Cell performance at 3.2GHz.

Table 5.6 shows these comparisons.

5.1.6 Secondary Ray Performance

We call the initial rays that are cast from the eye-point into the scene to determine

visibility “visibility rays” (sometimes these are called “primary rays”) and all other

rays that are recursively cast from that first intersection point “secondary rays.”

This is something of a misnomer, however, because it is these secondary rays, used to

compute optical effects, that differentiate ray traced images from images computed

61

Table 5.6: Performance Comparison for Conference Against Cell and RPU. Compar-
ison in Frames Per Second and Million Rays Per Second (MRPS). All Numbers Are
for Shading with Shadows. TRaX and RPU Numbers are for 1024×768 Images. Cell
Numbers are for 1024×1024 Images. The Cell is Best Compared Using the MRPS
Metric Which Factors Out Image Size.

TRaX IBM Cell[29] RPU[78]
130nm 65nm 1 Cell 2 Cells DRPU4 DRPU8

fps 31.9 112.3 20.0 37.7 27.0 81.2
mrps 50.2 177 41.9 79.1 42.4 128
process 130nm 65nm 90nm 90nm 130nm 90nm
area (mm

2) ≈ 200 ≈ 200 ≈ 220 ≈ 440 ≈ 200 ≈ 190
Clock 500MHz 500MHz 3.2GHz 3.2GHz 266MHz 400MHz

using a z-buffer. The secondary rays are not less important than the visibility rays.

They are in fact the essential rays that enable the highly realistic images that are

the hallmark of ray tracing. We believe that any specialized hardware for ray tracing

must be evaluated for its ability to deal with these all-important secondary rays.

A common approach to accelerating visibility rays is to use “packets” of rays to

amortize cost across sets of rays [79, 56, 80]. However, secondary rays often lose

the coherency that makes packets effective and performance suffers on the image as

a whole. Thus, an architecture that accelerates individual ray performance without

relying on packets could have a distinct advantage when many secondary rays are

desired.

To study this effect we use our path tracer application, which we have designed so

that we can control the degree of incoherence in the secondary rays (see Section 4.6.3).

We do this by controlling the sampling cone angle for the cosine-weighted Lambertian

BRDF used to cast secondary rays.

We compare our path tracer to Manta, a well-studied packet based ray/path

tracer [80]. Manta uses packets for all levels of secondary rays unlike some common

ray tracers that only use packets on primary rays. The packets in Manta shrink in

size as ray depth increases, since some of the rays in the packet became uninteresting.

We modified Manta’s path tracing mode to sample secondary rays using the same

cone angles as in our TRaX path tracer so that comparisons could be made.

62

Manta starts with a packet of 64 rays. At the primary level, these rays will be fairly

coherent as they come from a common origin (the camera) and rays next to each other

in pixel space have a similar direction. Manta intersects all of the rays in the packet

with the scene bounding volume hierarchy (BVH) using the DynBVH algorithm [24].

It then repartitions the ray packet in memory based on which rays hit and which

do not. DynBVH relies on coherence with a frustum-based intersection algorithm

and by using SSE instructions in groups of four for ray-triangle intersection tests. If

rays in the packet remain coherent then these packets will stay together through the

BVH traversal and take advantage of SSE instructions and frustum-culling operations.

However, as rays in the packet become incoherent they will very quickly break apart,

and almost every ray will be traversed independently.

To test how our path tracer performs relative to the level of coherence of secondary

rays we ran many simulations incrementally increasing the angle of our sampling cone

and measuring rays per second and speedup (slowdown) as the angle was increased

and secondary rays became less coherent. For all of our tests, we used a ray depth

of three (one primary ray, and two secondary rays). We believe that three rays

taken randomly on a hemisphere is sufficient for complete incoherence and will allow

secondary rays to bounce to any part of the scene data. This will cause successive

rays to have a widely ranging origin and direction, and packets will become very

incoherent.

With a cone angle close to 0 degrees, secondary rays will be limited to bouncing

close to the normal which will force rays to a limited area of the scene. In a packet

based system using a narrow cone angle, successive samples will have a much higher

probability of hitting the same BVH nodes as other samples in the packet thereby

allowing for multiple rays to be traced at the same time with SIMD instructions.

Increasing the angle of the cone will decrease this probability allowing for fewer, if

any, SIMD advantages. With a cone angle of 180 degrees a packet of secondary rays

will be completely incoherent and the probability of multiple rays hitting the same

primitives is very slim. We used the same cone angle sampling scheme in Manta,

and tested TRaX versus Manta on common benchmark scenes to show the degrees

of slowdown that each path tracer suffers as rays become incoherent.

63

As explained above, we used a fixed ray depth of three. We varied the size of

the image and the number of samples per pixel and gathered data for the number of

rays per second for each test for both path tracers. For TRaX we also recorded L1

cache hit rates and thread issue rates within the TM that was simulated. The images

themselves can be seen in Figure 5.1 with data about the images shown in Table 5.1.

Our primary interest is the speed for each path tracer relative to itself as the cone

angle is modified. The results are shown in Table 5.7. We show that as the secondary

rays become incoherent the TRaX architecture slows to between 97% and 99% of the

speed with a narrow cone angle. On the other hand, the Manta path tracer on the

same scene with the same cone angles slows to between 47% to 53% of its speed on

the narrow angle cone. We believe that this validates our approach of accelerating

single-ray performance without relying on packets and SIMD instructions.

Table 5.7: Results are Reported for the Conference and Sponza Scenes at Two
Different Resolutions with a Different Number of Rays Per Pixel. Path Traced Images
Use a Fixed Ray Depth of Three. TRaX Results Are for a Single TM with 32 Thread
Processors Running at a Simulated 500 MHz. Manta Numbers are Measured Running
on a Single TM of an Intel Core2 Duo at 2.0GHz. Speed Results are Normalized to
Path Tracing with a 10 Degree Cone.

Conference: 256×256 with 4 samples per pixel
ray casting only 10 degrees 60 degrees 120 degrees 180 degrees

Manta MRPS 1.61 0.8625 0.5394 0.4487 0.4096
Manta speed 1.87 1 0.63 0.52 0.47
TRaX MRPS 1.37 1.41 1.43 1.43 1.40
TRaX speed .97 1 1.01 1.01 0.99
Cache hit % 88.9 85.1 83.9 83.5 83.2
Thread issue % 52.4 52.4 52.5 52.5 52.4

Sponza: 128×128 with 10 samples per pixel
ray casting only 10 degrees 60 degrees 120 degrees 180 degrees

Manta MRPS 1.391 0.7032 0.4406 0.3829 0.3712
Manta speed 1.98 1 0.63 0.54 0.53
TRaX MRPS 0.98 1.01 0.98 0.97 0.98
TRaX speed 0.97 1 0.97 0.96 0.97
Cache hit % 81.5 77.4 76.3 76.0 76.0
Thread issue % 50.6 50.9 50.9 50.7 50.9

64

In addition to showing that the TRaX architecture maintains performance better

than a packet-based path tracer in the face of incoherent secondary rays, we need

to verify that this is not simply due to TRaX being slow overall. So, we also

measure millions of rays per second (MRPS) in each of the path tracers. The

Manta measurements are made by running the code on one core of an Intel Core2

Duo machine running at 2.0GHz. The TRaX numbers are from our cycle-accurate

simulator assuming a 500MHz speed and using just a single TM with 32 thread

processors. We expect these numbers to scale very well as we tile multiple TMs on

a single die. As mentioned in Section 5.1, chips with between 22 to 78 TMs per die

would not be unreasonable.

In order to show why TRaX slows down as it does, we also include the cache

hit rate from our simulator, and the average percentage of total threads issuing per

cycle in Table 5.7. As the cone angle increases, rays are allowed to bounce with a

wider area of possible directions, thus hitting a larger range of the scene data. With

a smaller cone angle, subsequent rays are likely to hit the same limited number of

triangles, allowing them to stay cached. As more threads are required to stall due to

cache misses, we see fewer threads issuing per cycle. This is a smaller thread-issue

percentage than we saw in previous work [47], which indicates that smaller TMs (TMs

with fewer thread processors) may be interesting for path tracing.

5.2 Overall Chip Design

Based on the results of the TM exploration in Section 5.1, this section analyzes

more of the chip-wide issues associated with the interaction between the groups of

TMs. Instead of exploring the full range of threads from 1-128, this section narrows

the search significantly to only those numbers of threads that were found to be most

compelling (16-64). As a result, we simulate a number of full chip configurations

based on this narrowed set TM configurations.

5.2.1 Architectural Exploration Procedure

In this section, we analyze TRaX architectural options using four standard ray

tracing benchmark scenes, shown in Figure 5.4, that provide a representative range

of performance characteristics, and were also reported in [2]. This design space

65

Conference
282k triangles

(a)

Sponza
76k triangles

(b)

Sibenik
80k triangles

(c)

Fairy
174k triangles

(d)

Figure 5.4: Test Scenes Used to Evaluate Performance. (a) Conference (b) Sponza
Atrium (c) Sibenik Cathedral (d) Fairy Forest

exploration is based on 128x128 resolution images with one primary ray and one

shadow ray per pixel. This choice reduces simulation complexity to permit analysis

of an increased number of architectural options. The low resolution will have the effect

of reducing primary ray coherence, but with the beneficial side-effect of steering our

exploration towards a configuration that is tailored to efficiently handle incoherent

rays. However, the final results of this section are based on the same images, the

same image sizes, the same mixture of rays, and the same shading computations as

reported for the SIMD GPU [2]. Our overall figure of merit is performance per area,

reported as MRPS/mm2, and is compared with other designs for which area is either

known or estimable.

As part of this second exploration, we examine an unrealistic, exhaustively-provisioned

TRaX multiprocessor as a starting point. This serves as an upper bound on raw

performance, but requires an unreasonable amount of chip area. We then explore

various multibanked Dcaches and sharing Icaches using Cacti v6.5 to provide area

and speed estimates for the various configurations [81]. Next, we consider sharing

large functional units which are not heavily used in order to reduce area with a

minimal performance impact. Finally, we explore a chip-wide configuration that uses

shared L2 caches for a number of TMs.

The ray tracer application can be run as a simple ray tracer with ambient occlu-

sion, or as a path tracer which enables more detailed global illumination effects using

Monte-Carlo sampled Lambertian shading [6]; this generates many more secondary

rays. Our ray tracer supports fully programmable shading and texturing and uses a

66

bounding volume hierarchy acceleration structure. In this section, we use the same

shading techniques as in [2], which does not include image-based texturing. As in

Section 5.1, this ray tracer application is compiled to use a large number of registers

and has no thread-local stack space.

5.2.2 Thread Multiprocessor (TM) Design

The primary comparison for this section is against the NVIDIA GTX285 [2] of

the GT200 architecture family. The GT200 architecture operates on 32-thread SIMD

“warps,” allowing a reasonable comparison between the GPU SIMD performance and

our TRaX MIMD behavior. The “SIMD efficiency” metric is defined in [2] to be the

percentage of SIMD threads that perform computations. Note that some of these

threads perform speculative branch decisions which may perform useless work, but

this work is always counted as efficient. In our architecture the equivalent metric is

thread issue rate. This is the average number of independent threads that can issue

an instruction on each cycle. These instructions always perform useful work. The

goal is to have thread issue rates as high or higher than the SIMD efficiency reported

on highly optimized SIMD code. This implies an equal or greater level of parallelism,

but with more flexibility and due to our unique architecture, less area.

We start with 32 threads in a TM based on the TM exploration in Section 5.1, but

switch to 1 GHz due to the high performance target. Each thread processor has 128

registers, issues in order, and employs no branch prediction, while keeping the call

stack in the register file. To discover the maximum possible performance achievable,

each initial thread contains all of the resources that it can possibly consume. In this

configuration, the data caches are overly large (enough capacity to entirely fit the

dataset for two of our test scenes, and unrealistically large for the others), with one

bank per thread. There is one functional unit (FU) of each type available for every

thread. Our ray tracing code footprint is relatively small, which is typical for most

advanced interactive ray tracers (ignoring custom artistic material shaders) [5, 6] and

is similar in size to the ray tracer evaluated in [2]. Hence the Icache configurations

are relatively small and therefore fast enough to service two requests per cycle at 1

GHz according to Cacti v6.5 [81], so 16 instruction caches are sufficient to service

67

the 32 threads. This configuration provides an unrealistic best-case issue rate for a

32-thread TM.

Table 5.8 shows the area of each functional component in a 65nm process, and

the total area for a 32-thread TM, sharing the multibanked Dcache and the 16

single-banked Icaches. Note that the total area is for the baseline over-provisioned 1

GHz 32-thread TM configuration where each thread has a copy of every functional

unit. Memory area estimates are from Cacti v6.51. Memory latency is also based

on Cacti v6.5: 1 cycle to L1, 3 cycles to L2, and 300 cycles to main memory.

FU area estimates are based on synthesized versions of the circuits using Synopsys

DesignWare/Design Compiler and a commercial 65nm CMOS cell library. These

functional unit area estimates are conservative as a custom-designed functional unit

would certainly have smaller area. All cells are optimized by Design Compiler to run

at 1 GHz and multicycle cells are fully pipelined. The average thread issue rate is

89%, meaning that an average of 28.5 threads are able to issue on every cycle out of

the 32 threads available. The raw performance of this configuration is very good, but

the area is huge. The next step is to reduce thread resources to save area without

1Note that Cacti v6.5 has been specifically enhanced to provide more accurate size estimates
than previous versions, for relatively small caches of the type we are proposing.

Table 5.8: Functional Unit Areas and Performance
Unit Area Cycles Total Area

(mm2) (mm2)
4MB Dcache (32 banks) 1 33.5
4KB Icaches 0.07 1 1.12
128x32 RF 0.019 1 0.61
FP InvSqrt 0.11 16 3.61
Int Multiply 0.012 1 0.37
FP Multiply 0.01 2 0.33
FP Add/Sub 0.003 2 0.11
Int Add/Sub 0.00066 1 0.021
FP Min/Max 0.00072 1 0.023
Total 39.69

Avg thread issue MRPS/thread MRPS/mm2

89% 5.6 0.14

68

sacrificing performance. With reduced area the MRPS/mm2 increases and provides

an opportunity to tile more TMs on a chip.

5.2.3 Exploring Constrained Resource Configurations

We now consider constraining caches and functional units to evaluate the design

points with respect to MRPS/mm2. Cache configurations are considered before shared

functional units, and then revisited for the final multi-TM chip configuration. All

performance numbers in our design space exploration are averages from the four

scenes in Figure 5.4.

Our baseline architecture shares one or more instruction caches among multiple

threads. Each of these Icaches is divided into one or more banks, and each bank has a

read port shared between the threads. Our ~1000-instruction ray tracer program fits

entirely into 4KB instruction caches and provides a 100% hit-rate while being double

pumped at 1 GHz. This is virtually the same size as the ray tracer evaluated in [2].

Our data cache model provides write-around functionality to avoid dirtying the

cache with data that will never be read. The only writes the ray tracer issues are to the

write-only frame buffer; this is typical behavior of common ray tracers. Our compiler

stores all temporary data in registers, and does not use a call stack. Stack traversal is

handled with a special set of registers designated for stack nodes. Because of the lack

of writes to the cache, we achieve relatively high hit-rates even with small caches, as

seen in Figure 5.5. The data cache is also banked similarly to the instruction cache.

Data cache lines are 8 4-byte words wide.

We explore L1 Dcache capacities from 2KB to 64KB and banks ranging from

1 to 32, both in power of 2 steps. Similarly, numbers and banks of Icaches range

from 1 to 16. First the interaction between instruction and data caches needs to be

considered. Instruction starvation will limit instruction issue and reduce data cache

pressure. Conversely, perfect instruction caches will maximize data cache pressure

and require larger capacity and increased banking. Neither end-point will be optimal

in terms of MRPS/mm2. This interdependence forces us to explore the entire space

of data and instruction cache configurations together.

Other resources, such as the FUs, will also have an influence on cache performance,

but the exponential size of the entire design space is intractable. Since we have yet

69

(a) (b)

Figure 5.5: L1 Data Cache Performance for a Single TM with Over-Provisioned
Functional Units and Instruction Cache. (a) Issue Rate for Varying Banks in a 2KB
Data Cache. (b) Dcache Hit%, 8-banks and Varying Capacities.

to discover an accurate pruning model, we have chosen to evaluate certain resource

types in order. It is possible that this approach misses the optimal configuration,

but our results indicate that our solution is adequate. After finding a “best” TM

configuration, we revisit Dcaches and their behavior when connected to a chip-wide L2

Dcache shared among multiple TMs. For single-TM simulations we pick a reasonable

L2 cache size of 256KB. Since only one TM is accessing the L2, this results in

unrealistically high L2 hit-rates, and diminishes the effect that the L1 hit-rate has on

performance. We rectify this inaccuracy in Section 5.2.3, but for now this simplified

processor, with caches designed to be as small as possible without having a severe

impact on performance, provides a baseline for examining other resources, such as

the functional units.

The next step is to consider sharing lightly used and area-expensive FUs for

multiple threads in a TM. The goal is area reduction without a commensurate decrease

in performance. Table 5.8 shows area estimates for each of our functional units. The

integer multiply, floating-point (FP) multiply, FP add/subtract, and FP inverse-

square-root units dominate the others in terms of area, thus sharing these units will

have the greatest effect on reducing total TM area. In order to maintain a reasonably

sized exploration space, these are the only units considered as candidates for sharing.

70

The other units are too small to have a significant effect on the performance per area

metric.

We ran many thousands of simulations and varied the number of integer multiply,

FP multiply, FP add/subtract and FP inverse-square-root units from 1 to 32 in

powers of 2 steps. Given N shared functional units, each unit is only connected to

32/N threads in order to avoid complicated connection logic and area that would

arise from full connectivity. Scheduling conflicts to shared resources are resolved in a

round-robin fashion. Figure 5.6 shows that the number of FUs can be reduced without

drastically lowering the issue rate, and Table 5.9 shows the top four configurations

that were found in this phase of the design exploration. All of the top configurations

use the cache setup found in Section 5.2.3: two instruction caches, each with 16 banks,

and a 4KB L1 data cache with 8 banks and approximately 8% of cycles as data stalls

for both our TM-wide and chip-wide simulations.

(a) (b) (c) (d)

Figure 5.6: Effect of Shared Functional Units on Issue Rate Shown as a Percentage
of Total Cycles. (a) FP Add/Sub (13% of Issued Insts). (b) FP Multiply (13% of
Issued Insts). (c) FP Inverse Square Root (0.4% of Issued Insts). (d) Int Multiply
(0.3% of Issued Insts)

Table 5.9: Optimal TM Configurations in Terms of MRPS/mm2.
INT FP FP FP MRPS/ Area MRPS/
MUL MUL ADD INV thread (mm2) mm2

2 8 8 1 4.2 1.62 2.6
2 4 8 1 4.1 1.58 2.6
2 4 4 1 4.0 1.57 2.6
4 8 8 1 4.2 1.65 2.6

71

Area is drastically reduced from the original over-provisioned baseline, but per-

formance remains relatively unchanged. Note that the per-TM area is quite a bit

smaller than the area we estimate for a GTX285 SM (streaming multiprocessor).

Table 5.10 compares raw compute and register resources for our TM compared to a

GTX285 SM. This is primarily due to the aggressive resource sharing in TRaX, and

the smaller register file since TRaX does not need to support multithreading in the

same way as the GT200. While many threads on the GT200 are context switched

out of activity and do not attempt to issue, every single thread in the 32 thread

TRaX TM attempts to issue on each cycle, thereby remaining active. Our design

space included experiments where additional thread contexts were added to the TMs,

allowing context switching from a stalled thread. These experiments resulted in 3-4%

higher issue rate, but required much greater register area for the additional thread

contexts.

Given the TM configurations found in Section 5.2.3 that have the minimal set of

resources required to maintain high performance, we now explore the impact of tiling

many of these TMs on a chip. Our chip-wide design connects one or more TMs to

an L2 Dcache, with one or more L2 caches on the chip. Up to this point, all of our

simulations have been single-TM simulations which do not realistically model L1 to

L2 memory traffic. With many TMs, each with an individual L1 cache and a shared

L2 cache, bank conflicts will increase and the hit-rate will decrease. This will require

Table 5.10: GTX285 SM vs. MIMD TM Resource Comparison. Area Estimates
Are Normalized to Our Estimated FU Sizes from Table 5.8, and Not From Actual
GTX285 Measurements.

GTX285 MIMD
SM (8 cores) TM (32 threads)

Registers 16384 4096
FPAdds 8 8
FPMuls 8 8
INTAdds 8 32
INTMuls 8 2
Spec op 2 1

Register Area (mm2) 2.43 0.61
Compute Area (mm2) 0.43 0.26

72

a bigger, more highly banked L2 cache. Hit-rate in the L1 will also affect the level of

traffic between the two levels of caches so we must explore a new set of L1 and L2

cache configurations with a varying number of TMs connected to the L2.

Once many TMs are connected to a single L2, relatively low L1 hit-rates of 80-86%

reported in some of the candidate configurations for a TM will likely put too much

pressure on the L2. Figure 5.7(b) shows the total percentage of cycles stalled due

to L2 bank conflicts for a range of L1 hit-rates. The 80-86% hit-rate, reported for

some initial TM configurations, results in roughly one-third of cycles stalling due to

L2 bank conflicts. Even small changes in L1 hit-rate from 85% to 90% will have an

effect on reducing L1 to L2 bandwidth due to the high number of threads sharing an

L2. We therefore explore a new set of data caches that result in a higher L1 hit-rate.

We assume up to four L2 caches can fit on a chip with a reasonable interface to

main memory, allowing a 64 bit memory bus per L2, resulting in a total of 256 bits

total, less than many commercial GPUs. Our target area is under 200mm2, so 80

TMs (2560 threads) will fit even at 2.5mm2 each. Section 5.2.3 shows a TM area of

1.6mm2 is possible, and the difference provides room for additional exploration. The

80 TMs are evenly spread over the multiple L2 caches. With up to four L2 caches per

chip, this results in 80, 40, 27, or 20 TMs per L2. Figure 5.7(c) shows the percentage

(a) (b) (c)

Figure 5.7: L2 Performance for 16 Banks and TMs with the Top Configuration
Reported in Table 5.9. (a) Hit-rate for Varying L2 Capacities with 20 TMs Connected
to Each L2. (b) Percentage of Cycles not Issued Due to L2 Bank Conflicts for Varying
L1 Capacities (and Thus Hitrates) for 20 TMs. (c) L2 Bank Conflicts for a Varying
Number of TMs Connected to Each L2. Each TM Has a 64KB L1 Cache with 95%
Hitrate.

73

of cycles stalled due to L2 bank conflicts for a varying number of TMs connected

to each L2. Even with a 64KB L1 cache with 95% hit-rate, any more than 20 TMs

per L2 results in >10% L2 bank conflict stalls. We therefore choose to arrange the

proposed chip with four L2 caches serving 20 TMs each.

Figure 5.8 shows how individual TMs of 32 threads might be tiled in conjunction

with their L2 caches. The result of the design space exploration is a set of architectural

configurations that all fit in under 200mm2 and maintain high performance. A

selection of these are shown in Table 5.11 and are what we use to compare to the best

known GPU ray tracer for the GTX285 in Section 5.2.4. Note that the GTX285 has

close to half the die area devoted to texturing hardware, and none of the benchmarks

(a) (b)

Figure 5.8: Potential TM and Multi-TM Chip Floor Plans. (a) TM Layout of 32
Threads and Shared Resources. (b) Chip with Multiple TMs Sharing L2 Caches.

Table 5.11: A Selection of Our Top Chip Configurations and Performance Compared
to an NVIDIA GTX285 and Copernicus.

L1 L1 L2 L2 L1 L2 Per Cache Bandwidth (GB/s) Thread Area MRPS/
Size Banks Size Banks Hitrate L1→reg L2→L1 main→L2 Issue (mm2) MRPS mm2

32KB 4 256KB 16 93% 75% 42 56 13 70% 147 322 2.2
32KB 4 512KB 16 93% 81% 43 57 10 71% 156 325 2.1
32KB 8 256KB 16 93% 75% 43 57 14 72% 159 330 2.1
32KB 8 512KB 16 93% 81% 43 57 10 72% 168 335 2.0
64KB 4 512KB 16 95% 79% 45 43 10 76% 175 341 1.9
GTX285 (area is from 65nm GTX280 version for better comparison) 75% 576 111 0.2
GTX285 SIMD core area only — no texture unit (area is estimated from die photo) 75% ~300 111 0.37
Copernicus at 22nm, 4GHz, 115 Core 2-style cores in 16 tiles 98% 240 43 0.18
Copernicus at 22nm, 4GHz, with their envisioned 10x SW improvement 98% 240 430 1.8
Copernicus with 10x SW improvement, scaled to 65nm, 2.33GHz 98% 961 250 0.26

74

reported in [2] or in our own studies use image-based texturing. Thus it may not be

fair to include texture hardware area in the MRPS/mm2 metric. On the other hand,

the results reported for the GTX285 do use the texture memory to hold scene data

for the ray tracer, so although it is not used for texturing, that memory (which is a

large portion of the hardware) is participating in the benchmarks.

Optimizing power is not a primary goal of this exploration, and because we

endeavor to keep as many units busy as possible we expect power to be relatively high.

Using energy and power estimates from Cacti v6.5 and Synopsys DesignWare, we

calculated a rough estimate of our chip’s total power consumption on the benchmark

scenes. Given the top chip configuration reported in Table 5.11, and activity factors

reported by our simulator, we roughly estimate a chip power consumption of 83

watts which we believe is in the range of power densities for commercial GPUs.

Copernicus [44] is an architecture design somewhat similar to TRaX that consists

of many tiles of basic processing elements. However, Copernicus uses much more

traditional CPU cores without the resource sharing in TRaX. In the table, Copernicus

area and performance are scaled to 65nm and 2.33 GHz to match the Xeon E5345,

which was their starting point. Each TRaX MIMD thread multiprocessors (TM) has

2 integer multiply, 8 FP multiply, 8 FP add, 1 FP invsqrt unit, and 2 16-banked

Icaches.

5.2.4 Results

To evaluate the results of our design space exploration we chose two candidate

architectures from the top performers: one with small area (147mm2) and the other

with larger area (175mm2) but higher raw performance (as seen in Table 5.11). We ran

detailed simulations of these configurations using the same three scenes as in [2] and

using the same mix of primary and secondary rays. Due to the widely differing scenes

and shading computations used in [2] and [44], a direct comparison between both

architectures is not feasible. We chose to compare against [2] because it represents

the best reported performance to date for a ray tracer running on a GPU, and

their ray tracing application is more similar to ours. We do, however, give a high

level indication of the range of performance for our MIMD architecture, GTX285,

75

and Copernicus in Table 5.11. In order to show a meaningful area comparison,

we used the area of a GTX280, which uses a 65nm process, and other than clock

frequency, is equivalent to the GTX285. Copernicus area is scaled up from 22nm

to 65nm. Assuming that their envisioned 240mm2 chip is 15.5mm on each side, a

straightforward scaling from 22nm to 65nm would be a factor of three increase on

each side, but due to certain process features not scaling linearly, we use a more

realistic factor of two per side, giving a total equivalent area of 961mm2 at 65nm. We

then scaled clock frequency from their assumed 4GHz down to the actual 2.33GHz of

the 65nm Clovertown core on which their original scaling was based. The 10x scaling

due to algorithmic improvements in the Razor software used in the Copernicus system

is theoretically envisioned in their paper [44].

The final results and comparisons to GTX285 are shown in Table 5.12. It is

interesting to note that although GTX285 and Copernicus take vastly different ap-

proaches to accelerating ray tracing, when scaled for performance/area they are quite

similar. It is also interesting to note that although our two candidate configurations

perform differently in terms of raw performance, when scaled for MRPS/mm2 they

offer similar performance, especially for secondary rays.

When our raw speed is compared to the GTX285 our configurations are between

2.3x and 5.6x faster for primary rays (average of 3.5x for the three scenes and two

MIMD configurations) and 2.3x to 9.8x faster for secondary rays (5.6x average). This

supports our view that a MIMD approach with appropriate caching scales better

Table 5.12: Comparing Our Performance on Two Different Configurations to the
GTX285 for Three Benchmark Scenes [2]. Primary Ray Tests Consisted of 1 Primary
and 1 Shadow Ray Per Pixel. Diffuse Ray Tests Consisted of 1 Primary and 32
Secondary Global Illumination Rays Per Pixel.

Conference (282k triangles) Fairy (174k triangles) Sibenik (80k triangles)
MIMD Ray MIMD MIMD MIMD MIMD MIMD MIMD

Type Issue Rate MRPS Issue Rate MRPS Issue Rate MRPS

147mm2 Primary 74% 376 70% 369 76% 274
Diffuse 53% 286 57% 330 37% 107

175mm2 Primary 77% 387 73% 421 79% 285
Diffuse 67% 355 70% 402 46% 131

SIMD Ray GTX GTX GTX GTX GTX GTX
Type SIMD eff. MRPS SIMD eff. MRPS SIMD eff. MRPS

GTX285 Primary 74% 142 76% 75 77% 117
Diffuse 46% 61 46% 41 49% 47

MIMD MRPS/mm2 ranges from 2.56 (Conference, primary rays) to 0.73 (Sibenik, diffuse rays) for both configs
SIMD MRPS/mm2 ranges from 0.25 (Conference, primary rays) to 0.07 (Fairy, diffuse rays)
SIMD (no texture area) MRPS/mm2 ranges from 0.47 (Conference, primary) to 0.14 (Fairy, diffuse)

76

for secondary rays than SIMD. We can also see that our thread issue rates do not

change dramatically for primary vs. secondary rays, especially for the larger of the

two configurations. When scaled for MRPS/mm2 our configurations are between

8.0x and 19.3x faster for primary rays (12.4x average), and 8.9x to 32.3x faster for

secondary rays (20x average). Even if we assume that the GTX285 texturing unit

is not participating in the ray tracing, and thus using a 2x smaller area estimate for

that processor, these speed-ups are still approximately 6x-10x on average. The fact

that our MIMD approach is better in terms of performance per area than the SIMD

approach is nonintuitive at first glance. This is mostly because we keep our cores very

small due to aggressive resource sharing and by not including extra register resources

for multithreading (see Table 5.10).

We believe that MRPS and MRPS/mm2 are fair units of measurement for ray

tracing hardware because they are relatively independent of the resolutions at which

the scenes are rendered. To put these MRPS numbers into perspective, if an inter-

esting image is assumed to take between 4-10m rays to render (see Section 5.2.1),

then our MIMD approach would render between 13 (10M rays / 131 MRPS) and 100

(4M rays / 402 MRPS) frames per second (fps) depending on the mix and complexity

of the rays. A scene requiring 8M rays (which is a relatively complex scene) at 300

MRPS would achieve 37.5fps.

5.3 Mobile Ray Tracing

In order to target a modern mobile computing environment for ray tracing, a

number of changes need to be made to the TRaX configurations discussed previously.

First, a smaller number of threads should be included to keep the power and area

consumption down. Additionally, we change the basic thread processor model to use

a smaller, 32 registers in the register file while adding on a small local store SRAM to

use as the stack. This causes a slight instruction bloat as values need to be moved to

and from the local store memory, however, it has the benefit of less expensive register

operations.

As with the other TRaX designs, mobile TRaX has Clusters of TPs that share

multiply and add floating point units (FPUs). The size of the cluster is varied to

provide high utilization of the FPUs for the mobile context. TPs in a TM still share

77

a floating point divide and inverse square root unit, which is even more area and

energy expensive, yet rarely utilized. Each TM shares a banked instruction cache to

allow TPs that do not conflict for a particular bank to proceed in parallel. Multiple

TM tiles share a banked data cache which contains the global, shared scene data and

frame buffer. An example TM with 32 TPs can be seen in Figure 5.9. Experimental

group and cluster size details can be found in Section 5.3.1.

5.3.1 Architecture and Methodology

The overall architecture follows the same ideas as Sections 5.1 and 5.2 based on a

simple, in-order integer thread execution model for TPs grouped into TMs that share

resources. That TM tile can be replicated to increase the total compute power. Since

the floating point units are shared within the architecture, we strive to find a design

point that is capable of achieving high utilization of these shared units. To a great

extent the floating point utilization depends on the particular application executing

on the system. In this section, we consider a ray tracer that traces primary visibility

as well as shadow rays.

For the mobile version, we use a customized LLVM back end to emit code compat-

ible with the TRaX ISA. The mobile compiler targets an architecture with 32 registers

only, and therefore a small local store memory is included to hold all thread-local

stack values. In order to execute architecture specific instructions, we expose a few

simple compiler intrinsics to the programmer. The single executable is then run on

each thread independently. The primary form of communication among threads is a

simple atomic increment instruction that each thread uses to find a unique assignment.

Global memory operations are managed by the programmer and the acceleration

structure is built by the host CPU and made available in the accelerator’s memory

space.

The simulation environment and architecture is mostly the same as in the other

explorations. Each TP consists of a simple, in-order, single-issue integer processor

as before, with the register file changed to 32 general purpose registers and a small

512-byte local memory added. The local memory acts as an extended register file for

local stack operations. We do not employ branch prediction and rely instead on thread

parallelism to achieve higher performance and to keep the shared floating point units

78

Figure 5.9: A 32-thread TM with Shared Caches and FPUs

busy. In every mobile configuration the FPU is shared by 8 TPs. We find empirically

that this is sufficient since each TP spends execution on pointer chasing and waiting

for memory requests to return, which keeps it from issuing FPU instructions on every

cycle.

In addition to the FPUs that are shared by each TP cluster, we also have one

special purpose floating point divide and inverse square root unit. Since this special

purpose functional unit is rarely used, we use only one of them per TM and for TMs

comprising up to 64 TPs. It should also be noted that the FPDIV/iSQRT functional

unit has a latency of 8 cycles at the 500 MHz clock rate of the mobile design. This

is higher than any of the other functional units in the accelerator, all of which have

single cycle execution.

Each TM has a 4 kB, 16-bank instruction cache for every 16 TPs allowing threads

to issue in parallel as long as they are fetching instructions from independent banks.

In practice, our in-order threads have enough execution divergence that sharing this

instruction cache does not have a large negative impact on performance. Sharing the

cache banks and floating point units largely mitigates the die area overhead that a

MIMD architecture would normally have over a SIMD approach.

For each TM, we use a 16kB banked data cache that caches data from the global

shared memory. We find that one bank per 8 TP cluster is the appropriate choice.

The global memory segment includes all of the scene data, acceleration structure, and

frame buffer. Because the thread assignment gives one pixel at a time to each thread,

79

we force all frame buffer writes to go around the data cache, thereby preventing

pollution of the cache by lines that are write only.

We limit the off-chip bandwidth to 8 GB/s based on the fact that upcoming

mobile SoCs, such as the Samsung Exynos 5250 [82], achieve up to 12.8 GB/s of

memory bandwidth with a 64 bit memory bus. We believe 8 GB/s is a reasonable

assumption for a compute-bound GPU in the near future because SoCs also share

that memory bandwidth with other IP blocks. We note that if the GPU and host

CPU are both in memory bound computational segments, the shared bandwidth will

impose performance restrictions. Section 5.3.3 considers a future SoC with more

available memory bandwidth. For area and performance estimates, we use Synopsys

DesignWare/Design Compiler [53] and a commercial 65nm CMOS cell library to

synthesize functional units, and Cacti 6.5 [81] for our cache and memory analysis.

Although we do not have accurate power consumption data for this architecture,

we can make a rough estimate based on estimated energy from Cacti and the activity

factor reported by our simulator. A 4 TM × 32-thread TRaX chip uses an average of

4 Watts rendering our test scenes. It should be noted that the caches and memories

generated by Cacti are not optimized for low power, and it is likely that power

consumption can be further reduced for more custom designed devices.

5.3.2 Results

We simulated the execution times for a number of configurations of the proposed

architecture on a simple ray tracer application to gather performance and utilization

data. We consider TM configurations with 32, 48 and 64 TPs per TM and for 1, 2,

4, 6 or 8 TM tiles. Results in all tables are ordered by the number of total threads

across all TMs and are annotated by the number of TMs and the number of TPs per

TM in parentheses. The test scenes in Figure 5.4 were run on each configuration and

the results presented are an average across the benchmark scenes unless indicated

otherwise. Note that while some of the images shown have textures, the ray tracer

used to report results does not perform texturing. Each scene was rendered at a

resolution of 1280x720 with primary rays and shadow rays for a single light source.

For every eight threads in a TM we provide one floating point multiplier and one

floating point adder while the entire TM shares one special functional unit regardless

80

of the number of threads. Thus a 32-thread TM has a maximum 9 FLOP per cycle

capability while the 48 and 64 TP TMs have 13 and 17 FLOPs, respectively.

A comparison of floating point capabilities of our architecture and commercial

rasterization architectures can be found in Table 5.13. The “RT GFLOPS” column

is the simulated floating point performance when running our ray tracer and is not

reported for the commercial architectures because ray tracers are not readily available

for comparison on those architectures. The “RT GFLOPS” entry for MRTP [83, 84] is

approximated based on the thread issue data provided in their papers. Only multiplies

and adds are considered in the floating point compute capabilities of the various

architectures, and do not include the rarely used FPDIV/iSQRT special function

unit. The commercial architectures included in this table include PowerVR SGX543

by Imagination Technologies and Tegra 2 from NVIDIA. These commercial chips are

Table 5.13: Comparison of Mobile Graphics Accelerator Architectures. All Accel-
erators Are Scaled to 65nm and 500 MHz Naively for Better Comparison with Our
Configurations. *Tegra 2 Die Size is Estimated from a Die Photo.

Architecture Size(mm2) GFLOPS RT GFLOPS
PowerVR SGX543MP1 8.0 18.0
PowerVR SGX543MP2 16.0 36.0
NVIDIA Tegra 2 6* 8.0
MRTP [83] (130nm) 16.0 4.3 ≈1.2
MRTP (naively scaled) 4.0 21.5 ≈6.0
32 (1x32) 1.9 4.0 2.5
48 (1x48) 2.5 6.0 3.7
64 (2x32) 3.8 8.0 4.9
64 (1x64) 3.2 8.0 4.9
96 (2x48) 5.1 12.0 7.2
128 (4x32) 7.6 16.0 9.3
128 (2x64) 6.3 16.0 9.2
192 (6x32) 11.4 24.0 12.6
192 (4x48) 10.1 24.0 12.7
256 (8x32) 15.2 32.0 15.5
256 (4x64) 12.6 32.0 15.7
288 (6x48) 15.2 36.0 17.1
384 (8x48) 20.2 48.0 20.3
384 (6x64) 18.9 48.0 20.3
512 (8x64) 25.3 64.0 23.1

81

not capable of efficient ray tracing, but are used in mobile phones and tablet designs,

so their floating point performance is included as the only point of reference.

Figure 5.10 shows the scenes used to study the performance of the mobile version

of TRaX. Table 5.14 gives a comparison of the ray processing capabilities of the

various configurations that were simulated for those scenes. As the number of threads

increases, so does the raw performance of the configuration. In the case of the

dragon scene, the memory access pattern is such that even with only 128 threads, the

computation is memory bandwidth limited, preventing further increases in ray tracing

performance. Section 5.3.3 goes into more depth on the bandwidth concern. In order

to provide a reasonable comparison to the MRTP, we consider the only scene we share

in common with them, viz. the dragon. We choose a 128-thread configuration because

the area is similar to what the MRTP would use when scaled to a 65nm process. We

also scale their performance up to 500 MHz assuming the change to the 65nm process

would allow for a faster clock rate, although a 5x increase is likely optimistic. Our 128

thread configuration is able to perform 6.18 million rays per second while the MRTP

achieves only 0.515 million rays per second, giving our architecture a 13x speedup for

the same circuit area.

For an HD resolution of 1280x720 pixels, mobile TRaX can ray trace images with

full shadows at 3.4 frames per second. While this is not a real-time frame rate, it

is still interactive enough for most medical imaging and visualization applications.

Furthermore, frameless techniques can be used for applications where some image

quality degradation is preferable to losing interactivity and the quality provided at

interactive rates is determined by the number of rays per second.

5.3.3 Memory Bandwidth Concerns

Our architecture performs ray tracing well and is capable of utilizing the available

floating point units effectively until the memory bandwidth limit is reached. In

particular, the performance of the dragon scene stops scaling because it reaches

the bandwidth limit with only 128 total threads for any TM count. However, the

bandwidth available to mobile SoCs is likely to grow in the future due to increasing

memory clock rates as well as larger memory buses. Table 5.15 shows the increases in

performance that can be achieved when bandwidth is raised to 16GB/s. The dragon

82

Conference
282k triangles

(a)

Crytek Sponza
262k triangles

(b)

Dragon
871k triangles

(c)

Fairy
174k triangles

(d)

Figure 5.10: Test Scenes Used to Evaluate Mobile Performance. (a) Conference (b)
Crytek Sponza (c) Dragon (d) Fairy Forest

Table 5.14: Ray Tracing Performance, Shown in Millions of Rays Per Second.
Threads conference crytek dragon fairy Average
32 (1x32) 2.48 1.41 1.94 1.81 1.91
48 (1x48) 3.74 2.11 2.81 2.72 2.84
64 (2x32) 4.94 2.80 3.62 3.59 3.74
64 (1x64) 4.96 2.78 3.60 3.60 3.74
96 (2x48) 7.43 4.19 5.17 5.37 5.54
128 (4x32) 9.80 5.55 6.18 7.03 7.14
128 (2x64) 9.86 5.52 6.09 7.08 7.14
192 (6x32) 14.5 8.24 5.88 10.2 9.72
192 (4x48) 14.7 8.26 6.07 10.3 9.84
256 (8x32) 19.1 10.8 5.75 12.3 12.0
256 (4x64) 19.3 10.8 5.90 12.6 12.2
288 (6x48) 21.5 12.2 5.91 13.4 13.2
384 (8x48) 27.0 15.5 5.74 14.7 15.7
384 (6x64) 27.2 15.5 5.86 14.9 15.9
512 (8x64) 32.5 18.2 5.68 15.8 18.1

scene achieves almost double performance since it is primarily memory bandwidth

constrained. It is likely that increasing the size of the cache would also decrease the

pressure on the memory bus.

Pure SIMD is not the most efficient ray tracing architecture due to the divergent

execution and memory patterns induced by traversing the acceleration structure and

the intrinsic nature of secondary rays [2]. The competing MRTP architecture [83]

addresses this limitation by allowing their architecture to dynamically reconfigure

to accommodate smaller SIMT blocks. The MRTP relies on single-thread vector

83

Table 5.15: Performance in Millions of Rays Per Second with the Baseline and
Increased Memory Bandwidth for the Dragon Scene as Well as an Average Across All
Scenes Tested.

Architecture 8GB/s 16GB/s 8GB/s 16GB/s
dragon dragon Average Average

256 (8x32) 5.75 10.17 12.0 12.7
384 (8x48) 5.75 10.16 15.8 16.3
512 (8x64) 5.69 10.14 18.1 18.5

operations to maintain performance while avoiding the extra overhead of moving to a

full MIMD architecture. Our alternative approach embraces this divergent behavior

and allows threads to execute in MIMD fashion and recovers efficiency through

resource sharing. Instead of giving each thread its own floating point multiplier

and adder, we decouple those units, sharing them among a group of threads. This

type of sharing is not possible in a typical SIMD architecture. Rarely will all threads

need the same unit at the same time. Furthermore, we share banked instruction and

data caches to enable parallel access when threads are not strictly synchronized. The

normal MIMD overhead is greatly reduced, and we are able to find a 13x speedup

over the reconfigurable SIMT architecture. Samsung has also recently shown some

interest in mobile ray tracing, including showing a prototype running on an field

programmable gate array (FPGA) that includes much more fixed-function logic than

TRaX [85, 86, 87].

5.4 Conclusion

The TRaX architecture provides a framework for ray tracing computation that is

more effective than current commercially available architectures and other research

architectures. The effectiveness of the TRaX design primarily comes from embracing

the natural program behavior found in ray tracers, rather than an attempt to warp the

ray tracing algorithm to fit the hardware. While TRaX is tuned towards the functional

requirements of our ray tracer, it still retains a large amount of programmability,

allowing future algorithmic optimizations and improvements. A programmer can

decide which advanced ray tracing features should be included, thereby increasing

84

the image quality at the expense of performance. Alternatively, image quality can be

sacrificed in order to improve the performance of the system.

This chapter has shown that, by using the same basic architectural approach,

ray tracing hardware can be designed to target both high-power, high-performance

applications and low-power, low-performance applications. Importantly, TRaX allows

traditional, single-threaded ray tracing applications to scale to many threads of

execution trivially, and at run time. The limitation for the number of parallel threads

that would allow for good scaling trivially for TRaX is on the order of one-tenth the

number of primary samples in an image. That means that a 1080p HD image could

scale relatively well up to around 200,000 threads, giving this approach many years

of usefulness in the future.

CHAPTER 6

RELATED WORK

A number of architectural designs from both commercial and research environ-

ments can be viewed as related to TRaX in one way or another. In fact, nearly every

architecture design in the last 30 years that allows for general purpose computation

in any way has had some form of ray tracer implementation at some point. The

architectural innovations that have led to increased ray tracing performance include

any method for increasing the number of instructions that can be issued over time,

increasing instruction throughput. A number of different techniques for improving

throughput exist, including SIMD, multi-threading, very large instruction word, super

scalar execution, out of order execution, and deep CPU pipelines. While general

purpose CPU architectures have implemented nearly all of these features at some

point, CPU innovations have primarily been concerned with increased performance

of a single thread. In this chapter, I discuss a number of different approaches to

increased execution performance, and reduced power consumption and how those

approaches compare with the TRaX architecture.

6.1 High Performance GPU Architectures

Graphics processing is an example of a type of computation that can be stream-

lined in a special purpose architecture and achieve much higher processing rates

than on a general purpose processor. This is the insight that enabled the GPU

revolution in the 1980s [88, 89, 90, 91]. A carefully crafted computational pipeline

for transforming triangles and doing depth checks along with an equally carefully

crafted memory system to feed those pipelines makes the recent generation of z-buffer

GPUs possible [68, 69]. Current GPUs have up to hundreds and thousands of

floating point units on a single GPU and aggregate memory bandwidth of nearly

300 Gbytes per second from their local memories. That impressive local memory

86

bandwidth is largely to support framebuffer access and image-based (look-up) textures

for the primitives. These combine to achieve graphics performance that is orders of

magnitude higher than could be achieved by running the same algorithms on a general

purpose processor.

Early Graphics Processing Units(GPU) were implemented as a fixed function

pipeline that would take in objects according to a programming interface and pro-

vide the output that the programmer expected. Over time, more and more knobs

were added to these pipelines that gave the programmer more control over how the

objects would eventually be displayed on the screen. Eventually, a good amount of

programmability was enabled, whereby programmers could implement their own pixel

and vertex shaders, which are simple programs that would replace that stage of the

standard graphics pipeline. Some efforts were made under this model to implement

ray tracers with varying levels of success [92, 93], however, limitations in the shader

programming model prevented high performance results. Eventually GPU architects

decided (with encouragement from programmers wanting to add more programmable

stages to the pipeline) that moving to a unified shader model, one where both pixel

and vertex shaders would be executed on the same execution hardware, would be

beneficial for load balancing, and for future workloads. The G80 was NVIDIA’s first

unified architecture [94], and it introduced the CUDA [95] programming methodology

for general purpose computing. CUDA requires threads be grouped into “warps” of

32 threads that can be scheduled together to a compute block (AMD uses the term

“wavefront” for the same concept). While these threads are coupled for scheduling, all

unified architectures only execute 16 of the threads at a time on the SIMD execution

units, often called SIMT in this context to emphasize the use of independent threads

as the data elements. The result of this wide SIMD execution model is that branching

can cause reduced SIMD performance as some threads must stall while waiting for

other threads to complete their portion of the branch. The worst case scenario,

which can occur often in ray tracing, would see a reduction in performance to 1
16

of

the maximum execution possible. Ray tracers have been analyzed on these unified

architectures [41, 96], though limitations still exist as will be discussed later.

87

Even with the increase of general compute capabilities on GPUs, there still remain

a number of special purpose functional units to support the traditional graphics

pipeline. In particular, rasterization, raster output, and texture computations are

carried out by special hardware designed for that purpose. The greatest comparison

to the TRaX architecture comes from the most recent GPUs from NVIDIA and

ATI(AMD), however, TRaX draws inspiration from all of the architectures discussed

in this chapter. As the high performance GPUs are currently the highest perform-

ing throughput focused compute solutions, they are the most similar to the TRaX

architecture.

6.1.1 NVIDIA Fermi

NVIDIA’s previous top end architecture, named Fermi and sometimes called

GF100 or GF110 (the name for the high end designs with subtle differences), is

discussed in some detail in NVIDIA white papers [97, 27]. The main selling point of

this architecture is the 512 CUDA cores, each of which can execute its own thread.

In Fermi, these cores are gathered in streaming multiprocessors (SM) of 32 cores as

2 groups of 8-wide SIMD that executes twice per fetch as the cores are in a separate

clock domain from the instruction fetch. This results in 64 independent fetches that

occur on each cycle on a GF100. The scheduler allows a single SM to execute two

independent warps simultaneously. A warp is a group of threads that is set up by the

programmer. Due to the SIMD nature of the hardware, performance is optimal when

all of the threads in a warp branch together. In the case where any threads diverge

from the rest of the warp, those threads must execute serially and many of the cores

can end up sitting idle.

Another distinction of the Fermi architecture is a much improved memory system

over older GPUs. There is a 768 KB L2 cache along with L1 caches per SM that

decrease the access latency for many memory operations that are common to ray

tracing. The L1 cache and SM shared memory each have 16 KB of independent

memory and an additional 32 KB that can be assigned to one or the other. There

is also improved 64-bit arithmetic performance, but much of the computation done

by ray tracing and rasterization does not require 64-bit precision. NVIDIA created

88

CUDA [95] as a method of general purpose programming for the G80 architecture

and it has also been used on the GT200 (Tesla) architecture before Fermi [98, 99].

Scientific applications in CUDA are the primary use for 64-bit arithmetic operations

on the GPU.

6.1.2 NVIDIA Kepler

NVIDIA’s most recent architecture goes by the codename Kepler [100], and in-

cludes a number of specific chips such as the GK104 and GK107. Similar to other

GPU architectures, it depends heavily on a SIMD execution model while providing a

few improvements over previous NVIDIA GPUs. The biggest change is the removal of

a separate clock domain for the compute cores, meaning that instead of issuing 8-wide

SIMD twice for the same fetch, a 16-wide SIMD group is provided that is clocked at

the same rate as the rest of the chip. This change was made for power reasons, but

has the added marketing benefit of increasing the number of cores relative to previous

NVIDIA architectures to approximately double. Therefore, a single GK104 has 1536

cores, grouped into 8 streaming multiprocessors (SMX) with 192 cores in each. A

SMX has 12 independent 16-wide SIMD units that are capable of executing SPMD

code. As a result, a single GK104 can fetch and execute up to 96 different instructions

on each cycle. Compared to Fermi, the Kepler architecture has a higher amount of

compute per SMX than the GF100. Kepler also exists as a number of lower powered

parts designed for laptops and mass market computing devices. The top end Kepler

part is the GK110 [101], which has a similar SMX to the GK104, but with 15 SMXs

on a chip for a maximum of 2880 CUDA cores. Additionally, the L2 cache is 1536KB,

which is twice as large as the GF100 or GF110.

6.1.3 AMD Cypress and Cayman

The ATI/AMD architectures that directly competed with Fermi are known by

the codenames, Cypress [102], and Cayman. Cypress is based on a VLIW set of four

single-precision ALUs along with a special purpose ALU (for things like branches and

advanced arithmetic), often called VLIW5. These VLIW blocks are placed in clusters

of 16 that share a 8 KB L1 cache and 32 KB of local memory. Each cluster is called a

SIMD core, which leads to the same problems with divergent branching that exist in

89

the Fermi architecture. A set of 20 SIMD cores share a global register file and a 256

KB L2 cache resulting in 320 VLIW cores capable of issuing up to 1600 operations

per cycle.

Cayman [103] switched to a VLIW4 implementation, opting to drop one of the

single-precision ALUs while keeping the special purpose ALU. This switch makes

sense as high utilization of a VLIW execution model requires either highly optimized

assembly code, or a very efficient compiler capable of extracting instruction level

parallelism (ILP) from the source code. The step to VLIW4 can be seen as a step

from the Cypress-style VLIW5 towards the purely SIMD model found in GCN and in

the NVIDIA competition. Since VLIW4 has fewer execution units per SIMD cluster

than VLIW5, while Cayman increases from 20 to 24 SIMD cores, the total number

of execution cores drops from 1600 to 1536. AMD still makes and sells GPUs that

use the VLIW4 and VLIW5 execution models, and they can be found in any of the

AMD Fusion APUs [104] among other products. Cayman has a 512KB L2 texture

cache as well as smaller 8KB L1 texture caches for each SIMD cluster.

6.1.4 AMD Graphics Core Next (GCN)

AMD’s Graphics Core Next is their most recent architecture, and it is set to

compete at the top end with NVIDIA’s Kepler. The biggest change in the GCN

architecture is the departure from VLIW-based execution that AMD has espoused

in their GPUs previous to GCN. This major shift in execution models is largely

driven by a desire to provide much more efficient execution for general purpose

computing which is becoming more important for GPUs. While many graphics

shaders have traditionally been able to leverage compiler scheduling to extract high

levels of instruction level parallelism (ILP), more general purpose code has a harder

time discovering ILP. Instead, they have chosen to use pure SIMD of single execution

units, replacing SIMD with VLIW execution units. Similar to Kepler, GCN uses

16-wide SIMD, but groups four SIMD clusters in what they call a compute unit

(CU). This CU has a 16KB L1 data cache as well as some read only texture and

instruction caches shared among four CUs. The top end GCN parts have a total

of 2048 cores, which indicates that 128 independent instructions can be fetched and

90

issued on each cycle. This is a huge increase from the 24 independent instructions

issued that were capable on the previous VLIW4 design.

6.2 Low Power Commercial Architectures

Recent years have seen a huge increase in the computational power and popu-

larity of mobile devices. Smart phones are dominating the cell phone market and

low-power tablet computing devices are becoming increasingly popular. Some of

the advantages over more traditional computing platforms are that these devices

are always available, are usually connected to the network, and have support for

advanced graphics. Graphics support is important not only for graphics-intensive

user interfaces, but increasingly because the applications themselves require high-

quality graphics. Mobile computing applications are being deployed in situations

ranging from medical, to scientific applications where visualizing data quickly and

accurately is essential. Even in mobile computing, interactive computer graphics

architectures are currently dominated by single instruction, multiple data (SIMD)

hardware accelerators executing some variant of triangle rasterization [3].

A potential advantage of ray tracing for mobile platforms is that first-order per-

formance scales linearly with the number of screen pixels. The inner loop of a ray

tracer iterates over the pixels, which can each be processed independently. The

hierarchical acceleration structure allows the search of the scene data to behave

roughly logarithmically in the number of primitives, whereas first-order rasterization

performance scales linearly with the number of scene primitives. Some culling based

on scene partitioning is possible, but in general rasterization time grows with the

number of geometric primitives. For a mobile device, the number of pixels is not

expected to grow dramatically. An iPhone4 Retina display (640x960) is reported

to be roughly at the resolution of the human eye already [105]. A tablet such as

an iPad (1024x768) [106] or Samsung Galaxy (1280x800) [107] has somewhat higher

pixel count because of larger screen size. Scene data can be expected to increase in

size and complexity as new applications are explored [38]. Mobile ray tracers will be

able to handle larger scenes as the memory capacity of mobile devices increases.

91

6.2.1 Tegra

Tegra [108] is a commercial System on Chip (SoC) design from NVIDIA target-

ing mobile computing devices such as cell phones, media players and tablets. An

important part of the SoC is the inclusion of a graphics accelerator intended for

rasterization. While rasterization and ray tracing share some of the same shading

requirements, ray tracing more naturally handles hidden surface removal, indirect

lighting, and shadow effects. Ray tracing has been performed on NVIDIA’s discrete

GPU solutions, however, current Tegra chips do not have the same unified compute

architecture yet and would likely perform ray tracing poorly. A comparison of mobile

accelerator compute capabilities, including the graphics accelerator from Tegra 2, can

be found in Table 5.13. While Tegra 3 and Tegra 4 have since been released to the

market, they were released after this comparison was performed.

6.2.2 PowerVR

PowerVR [109] is an architecture that does very similar computations to those

done by Tegra chips. The main distinction of the PowerVR parts is that they separate

the image into a set of screen tiles that can be independently processed. Triangles that

overlap each screen tile are placed into corresponding geometry bins prior to hidden

surface removal. Visibility is then determined by performing a simple ray cast for each

pixel and each primitive in the tile. The professed benefit of the tile-based approach

is that with accurate depth information, the renderer can avoid processing fragments

for many of the hidden surfaces that would not contribute to the final display color.

Ray tracing similarly removes hidden surfaces prior to processing fragments, but is

capable of retaining access to global scene data. Similar to the Tegra, PowerVR chips

are designed for rasterization and can perform ray tracing with some difficulty, despite

the use of ray casting for hidden surface removal, because global scene data are not

retained.

6.3 General Purpose Architectures

General purpose Central Processing Units(CPU) are the basis of nearly all com-

puting platforms these days. Their history is long and varied, and in recent years

the trends have been towards an increase in the throughput processing capabilities

92

without compromising the single threaded performance. One way this can be achieved

is through the addition of multiple hardware supported thread contexts which can

be switched to in a fine-grained manner (every cycle), in a course grained manner

(every N cycles), or can both issue on the same cycle. Some commercial architectures

that have included support for multiple threads include the Intel Netburst architec-

ture [110], the IBM Power5 architecture [111], and the Sun Niagara [112]. While

CPU architectures are able to reduce the time it takes to trace a single ray, the ray

processing capabilities of these architectures are limited due to the increased area and

power overhead of accelerating that single ray.

6.3.1 SIMD Extensions to CPUs

CPU SIMD is a fundamentally different way of performing SIMD operations than

the way GPUs do SIMD, despite the similarities in actually building the units. In a

GPU, there are independent threads of execution that will hopefully always perform

the same operations with just a difference in the data being used. In order to do

these operations on a GPU the functional units must be replicated N times for N-wide

SIMD. In contrast, CPU-style SIMD comes from a single thread of execution. While

executing a single thread, if there is some data parallelism available within that

thread’s data then special SIMD instructions invoke a special mode of execution for

the wide ALUs that are also used for regular arithmetic. For instance, a 64-bit

ALU could perform four 16-bit operations in parallel with a very small overhead to

reconfigure the unit. It is this kind of SIMD that is done on CPUs and that can also

be called Vector processing.

The Cray architecture [113] was one of the early vector processing machines. It

introduced the use of vector registers that would be used to perform vector operations

similar to how SIMD works in CPUs today. The primary use of these vector registers

and functional units were to load a set of data once and perform a series of operations

on it before storing the results back in memory. The Cray architecture also had a

feature called “chaining” which is essentially the same as register forwarding.

93

6.3.2 Cell Architecture

The IBM Cell processor [114, 115] is an example of an architecture that seems quite

interesting for ray tracing. With a 64-bit in-order power processor element (PPE)

core (based on the IBM Power architecture) and eight synergistic processing elements

(SPE), the Cell architecture sits somewhere between a general CPU and a GPU-style

chip. Each SPE contains a 128×128 register file, 256kb of local memory (not a cache),

and four floating point units operating in vector mode. When clocked at 3.2 GHz

the Cell has a peak processing rate of 200GFlops. Researchers have shown that with

careful programming, and with using only shadow rays (no reflections or refractions)

for secondary rays, a ray tracer running on a Cell can run four to eight times faster

than a single-core x86 CPU [29]. In order to get those speedups the ray tracer required

careful mapping into the scratch memories of the SPEs and management of the SIMD

branching supported in the SPEs. TRaX is able to improve performance while not

relying on the use of coherent packets to extract SIMD performance, also resulting in

less programmer effort.

6.3.3 Larrabee, Intel MIC, and Xeon Phi

Larrabee [45] is an architecture from Intel that consists of many simple x86 cores

connected in a bidirectional ring network that is used to keep the caches for each

individual core coherent. Each core implements a 16-wide SIMD execution unit

similar to the SIMD extensions for CPUs where a single thread issues the instruction

for all 16 pieces of data. Since Larrabee is based on x86 cores, it is clearly intended

for general purpose computing and rasterizing graphics as well as ray tracing and

makes heavy use of SIMD in order to gain performance. Because it is intended as a

more general purpose processor, Larrabee also includes coherency between levels of

its caches, something which TRaX avoids because of its more specialized target. The

use of a ring network that communicates between local caches adds complexity to the

architecture. Larrabee has since changed focus from visual computing to target the

High Performance Computing (HPC) field instead. The Knight’s Corner chips, also

called MIC (many integrated cores) [116] and commercially branded as “Xeon Phi,”

are scheduled to be released in early 2013 with around 50 Larrabee cores. These Xeon

94

Phi chips may well be used for high performance real time ray tracing, though their

price point will likely be much higher than that of current commercial GPUs.

6.4 High Performance Research Architectures

Researchers have developed special-purpose hardware for ray tracing [117, 118].

The most complete of these are the SaarCOR [119, 39] and Ray Processing Unit

(RPU) [40, 78] architectures from Saarland University. While research architectures

rarely turn into commercial products, they provide a good range of exploration of the

kinds of techniques that might be useful in the future.

6.4.1 StreamRay

StreamRay [120, 121] takes a different approach to solving the coherence problem

in ray tracing. Instead of designing an architecture that can handle divergent threads,

they try to group rays into groups that will be coherent. This is done by some

special purpose filtering hardware that then allows the use of wide SIMD execution.

Each stage of execution includes a filter operation that separates active and inactive

rays into groups. The next stage of execution chooses only rays from the active

group to continue. They consider SIMD widths of 8, 12, and 16 for their execution

model, so in many ways StreamRay proposes a method that could be used to increase

the performance of other SIMD architectures. The thing those architectures lack

compared to StreamRay is the addition of ray filtering hardware and a group of

address generation units.

6.4.2 Rigel

Rigel [122] is a 1000-core tiled architecture that is in many ways similar to TRaX.

Both have a large shared cache per tile, with an interface to the rest of the chip.

In addition, the individual cores in both have the ability to execute independent of

the other threads in their cluster. Rigel does have some important differences when

compared to TRaX. For instance, Rigel does not share functional units or instruction

caches like TRaX does. These features of TRaX are what allows high utilization

to continue even with a reduced number of resources consuming area. In addition,

Rigel does not have a ray tracer written specifically for it and the one ray tracing

95

benchmark they test does not report frame rates or numbers for how many rays it

can process per second. Rigel is a dual-issue in-order architecture with many threads

tiled on the chip.

The later work of [123] involves a more in-depth exploration of the memory model

for Rigel. They implement a hardware cache coherence protocol as well as maintaining

coherence through software and allowing for switching between the two methods for

coherence. Their set of benchmarks does not include ray tracing, but they show

results that are positive for the benchmarks they do test.

6.4.3 RPU

One of the first custom architecture designs specifically for ray tracing was im-

plemented on an FPGA [39, 40, 78]. The RPU (and SaarCOR before it) took the

fixed-function approach of the original GPUs but targeted at ray tracing, that being

the direct translation of the algorithm to fixed-function hardware components that

pass data along as they are processed. A set of programmable execution units was also

provided to allow code to be written for different kinds of intersection and shading

computations to be performed in 4-wide SIMD. After a single set of these units was

shown to work, the design was replicated four times to fill the FPGA that was used.

A downside to the fixed function parts of the RPU is that only kd-tree acceleration

structures could be used. Another drawback is that programming for the RPU is

clumsy and resembles shader programming for GPUs, something that only the most

ambitious of hackers even attempt.

6.4.4 Copernicus

Govindaraju et al. [44] presented a design, called Copernicus, that is also similar

to this work. Similar to Rigel, they present a many-core tiled architecture with fairly

standard CPU cores. In fact, many of the features of CPU cores that are absent in

TRaX cores are still present in Copernicus. Each core has a full set of functional

units and caches provisioned for it. They are able to fit 128 Copernicus cores using a

22 nm process in about the same area as the proposed TRaX design. Since they use

4-wide multithreading, the direct comparison is 512 threads at 22 nm for Copernicus

96

and 2560 threads at 65 nm for TRaX. Some Copernicus ray tracing results can be

found in Table 5.11.

6.5 Low-Power Ray Tracing Research

While ray tracing is known for requiring large amounts of processing power to

work in real time, there have been some efforts to consider what would be needed

for mobile chips to perform ray tracing. The mobile space is interesting because a

number of devices are already reaching pixel densities that are high enough that the

human eye cannot benefit significantly from increased density. Such a fixed resolution

target allows for interesting trade-off analysis for real time ray tracing.

6.5.1 ENCORE

Lohrmann [124] presents a method for performing ray tracing on more traditional

GPU-style architectures. Ray tracing is expressed as vertex and fragment shader pro-

grams that execute within the traditional rasterization pipeline and operate on scene

data stored within the texture and buffer memories of the GPU. While Lohrmann’s

approach is a useful way to repurpose existing hardware, our architecture is designed

to have the exact hardware resources needed for ray tracing. In addition, Chang et

al. [125] find that bounding volume hierarchies (BVH) are the most energy efficient

acceleration structure on both CPUs and GPUs. This dissertation uses a BVH

exclusively to reduce power consumption.

6.5.2 MRTP

Kim et al. [83, 84] demonstrate their Mobile Ray Tracing Processor (MRTP),

which is similar to most SIMD targeted ray tracers in that they experience the

difficulty of dealing with the SIMT execution model. Their approach is to allow

the architecture to dynamically reconfigure a hybrid vector SIMD configuration with

fewer dependent threads of execution. However, to ensure high vector utilization, the

SIMD threads must be able to find opportunities to issue 3-wide vector operations.

While this dynamic reconfigurability is interesting, we employ a MIMD design to

allow for more thread flexibility. The MRTP achieves a peak performance of 673K

rays/sec using 16 mm2 in a 0.13 µm process running at 100 MHz on a small scene.

97

The MRTP only executes 103K rays/sec for the much larger dragon model, which is

representative of the size of modern scenes. Their work is the best point of comparison

for mobile ray tracing accelerators, hence Table 5.14 provides comparison with their

best case performance, naively area and frequency scaled to 65nm and 500 MHz.

Anido et al. [126] also synthesize an architecture for interactive ray tracing in a 0.13

µm process that only consumes 0.125 mm2. However, their work tests only very

simple scenes and does not use an acceleration structure, making it a poor point for

comparison to the work presented here.

6.6 Conclusion

There are many different architectures that can be used to perform ray tracing.

While many of them show interesting and effective uses of hardware for ray tracing in

particular, there is still room for further exploration. In particular, general purpose

architectures have been designed to accelerate all kinds of computation, but at the

expense of specific applications. Special purpose graphics processing units are very

good at rasterization operation, but fall short of achieving peak hardware utilization

for ray tracing due to differences in the two algorithms. Some specialized pipelines

have been designed for ray tracing, but they restrict the development of future ray

tracing algorithms and software optimizations by including large portions of fixed

function in the design. There is room in the existing space for an application-tuned

programmable architecture along with algorithmic changes that can map well to

efficient execution hardware.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, I have presented an exploration of a number of different

architectural techniques that have been used to accelerate graphics applications in the

past and present. I have also proposed a direction for future graphics architectures

to progress in order to provide higher performance for ray tracing in particular. The

nature of the ray tracing algorithm differs from the rasterization techniques used by

current and past dedicated graphics architectures enough to justify novel techniques.

In particular, the traversal of acceleration structures naturally creates divergence of

both control flow, and memory access between different rays. General purpose caches

are able to reduce the impact of divergent memory access when coupled with smart

ray-thread assignment. MIMD computation is better suited to divergent control flow

than the SIMD compute that is so prevalent in both CPU and GPU architectures

that are in production today. The TRaX model of allowing threads to diverge

while reducing overhead by sharing lesser-used functional and memory units is more

effective than the resulting reduction in SIMD utilization that necessarily occurs with

competing architectures.

With the help of a cycle-accurate simulator, I have demonstrated a number of

results indicating the above claims. When compared to a highly optimized CPU ray

tracer that uses CPU-style SIMD, the slowdown in TRaX is much reduced when

operating on highly divergent groups of rays. TRaX slows down to 97% to 99% of

top speed on the test scenes in Section 5.1 when the secondary rays become highly

incoherent, while the CPU ray tracer, Manta, slows down to 47% to 53% of top speed

on the same scenes with the same mechanism for controlling ray coherency. I attribute

the difference to the overhead of dealing with small packets and the breakdown of the

SIMD operation as the packets become highly incoherent. An added benefit of the

99

TRaX method when compared to the CPU ray tracer is that the programmer effort

is reduced by only writing a single-threaded ray tracer with very simple mechanisms

for parallelization and no need for SIMD intrinsics or data management.

In comparison to GPU-style SIMD compute, TRaX has also been shown to com-

pare favorably. The TRaX solutions demonstrate speed-ups from 2.3x to 9.8x in raw

performance and 8x-32x faster (6x-10x on average with generous area scaling for the

GPU) in performance per area over the best reported GPU-based ray tracer. While

GPU architectures have improved somewhat over the particular GPU in question

(GTX 285), the most important step for ray tracing, that of providing large quantities

of MIMD threads, has not yet appeared in any GPU. The improved caches in the

Fermi (GF100) architecture from NVIDIA [97] bring performance gains of 4x with

twice the compute resources, representing an improvement to the memory divergence

problem. Therefore, further TRaX scaling to newer process sizes would produce

similar performance per area improvements for ray tracing, perhaps reduced by a

factor of 2.

In comparison to other architectures designed for graphics on an SoC, TRaX is

able to provide similar maximum numbers of floating point operations per second,

while more effectively using those computation units in performing ray tracing. The

mobile space is compelling when looking at the future due to the ubiquity of these

devices, and the potential applications for high performance graphics. There exists

more of a market for exploration of new ideas through the inclusion of small ray

tracing oriented IP blocks along with associated application developer support. It is

possible that the first systems to begin to ship with hardware ray tracing support will

be mobile or embedded devices where backwards compatibility with existing software

is not as essential as desktop computing environments. In particular, a low-power

home console entertainment device could be produced that would target the high

definition resolution of 720p available on all current HD televisions with real time ray

tracing capabilities.

7.1 TRaX-style Programs

While this dissertation has focused almost entirely on ray tracing and accelerating

ray tracing, the TRaX architecture itself is completely capable of general purpose

100

computation. Due to the optimizations of the architecture for ray tracing, some

applications will not run as well on a TRaX-style architecture as on a general purpose

CPU or GPU. The class of applications that would work well on TRaX should exhibit

the following application features:

• A majority of the run-time can be performed by parallel threads.

• The threads all execute the same program.

• Infrequent need for synchronization among the threads.

• Mostly read-only shared memory, ideally with independent threads writing to

nonshared memory only.

• A mostly nonuniform dynamic instruction pattern (e.g., not 90% fpadd).

For applications that do not exhibit all of these features, adjustments could be made

to the TRaX architecture to facilitate them. For programs that are mostly scalar,

meaning they gain little to no benefit from additional threads, the cores would need

to support instruction level parallelism features, such as out-of-order and super scalar

processing. When a number of different programs are desired to be running in

parallel, additional instruction caches could be provided, or mechanisms could be

added to allow for rapid instruction cache context switching. In order to support

frequent thread synchronization, a number of hardware synchronization options could

be pursued, most of which would be expensive to invoke, but would likely cause little

overhead when not used. If an application needs a large number of shared memory

pages, then the caches and memory system could be supplemented with coherence

techniques that are well known and standard at an increase in the area and power

consumed. SIMD is likely to be a good solution to high levels of uniform instruction

issue.

7.1.1 SIMD Efficiency in TRaX

An experimental SIMD mode has been implemented in the simulator to enable

SIMD experiments. When SIMD execution is enabled, the threads within a TM

arrange themselves in SIMD blocks for execution. After one instruction is fetched by

101

one thread in a block, further fetching is stalled until all of the threads have been

able to issue that instruction. This ensures that SIMD blocks do not diverge due to

contention for functional units or variable latency operations, such as memory loads.

This synchronization on coherent fetches is essential to prevent the performance in

SIMD mode from approaching 1/N of the MIMD performance for N-wide SIMD

(essentially each block issuing only one instruction at a time).

Since the TRaX compiler does not have any concept of SIMD clusters of threads,

there is no automated way for SIMD blocks to recognize when their execution should

be forced to rejoin after diverging. A SIMD synchronization instruction exists that

the programmer can place in the assembly to suggest to the threads that they should

synchronize at that point. This instruction allows threads that have diverged for

one reason or another to return to a good state where they will be able to once

again fetch and issue with SIMD efficiency that is greater than 1/N. The TRaX

SIMD experiments, seen in Table 7.1, have shown performance as high as 1.5/8

SIMD utilization for 8-wide SIMD running our ray tracer with a few synchronization

instructions. Ultimately, adding SIMD support to the compiler is outside the scope

of this dissertation, but it would enable groups of threads to be able to regain

their synchrony. A good indication for the best SIMD efficiency that compiler and

programmer effort could provide to a ray tracer can be found in the results reported on

commercial GPUs [2]. For primary rays, they achieve SIMD efficiency of 56-90% for

primary rays and 30-64% for less coherent diffuse rays on what is effectively 16-wide

SIMD.

7.1.2 TRaX Rasterizer

I wrote a basic rasterizer using the compilation tools discussed in Chapter 4 based

on ideas from Capens [127] as well as Shirley [62]. While the rasterizer did not produce

interesting results to present in this dissertation, the implementation exposed a few

weaknesses of the TRaX architecture with respect to rasterization. First, rasterization

requires a region of shared memory that is not found in ray tracers, the z-buffer.

Advanced rasterizers also add other buffers that are shared written regions of memory.

All of these buffers either require some tricks or some amount of memory coherence

102

Table 7.1: SIMD Performance: Conference Scene
Image Size MIMD SIMD4 SIMD8

32x32 1 0.302 0.175
256x256 1 0.303 0.185

to function correctly, and these features are not readily available in the basic TRaX

architecture. Memory coherence is something we have been able to essentially ignore

when considering the ray tracing algorithm, so that it is an additional part of getting

the rasterizer to work with some architectural modifications. One way that coherence

might be maintained is by using a version of the SWEL protocol [128] to push the

shared buffers to the shared level of memory and ensure that they stay there as long as

that is beneficial for performance. Since there are currently many caches in the TRaX

architecture, it might be necessary to implement some smart cache data placement

techniques such as R-NUCA [129]. In combination with these additional hardware

features, a rasterizer could be used for primary visibility with ray tracing performing

a second pass on the image to increase the quality of illumination. In such a system

with multiple applications it may be necessary to allow the caches to efficiently share

capacity with a scheme like Dynamic Spill-Receive [130].

7.2 Future Work

As rays diverge and threads begin to process highly diverged rays, the efficiency

of the cache-based memory system begins to degrade. A potential improvement to

coherent ray processing in a parallel ray tracing system would involve some sort

of ray reordering. Streamray [120] proposes the use of hardware ray streams in

order to facilitate on-chip reordering of rays after every node intersection. Another

approach [131] reduces the frequency with which rays need to be reordered through

the use of treelets. A treelet is a group of nodes within a BVH (or other tree structure)

that are nearby in the tree. In order to incorporate both of these ideas, TRaX would

leverage treelets in order to find portions of the acceleration structure that can fit

in the L1 cache of a given TRaX TM. Assuming enough rays could be kept in flight

at once, the regions of memory associated with a given treelet can be brought in

103

once and held for a large amount of computation prior to evicting those data. This

increased cache efficiency should also reduce the amount of off-chip bandwidth at the

expense of on-chip data traffic. Additionally, once rays within a TM are coherent

enough, the shared functional units can be chained together to reduce the energy

consumed by instruction fetch and register accesses [51].

Noise and other procedural texture generation would be interesting in other ap-

plications to analyze on both SIMD and MIMD modes of the TRaX simulator. Noise

textures would use a noise kernel that would be called many times per pixel to

sample the noise at many different frequencies and composite the contributions to

one pixel. For example, Perlin noise techniques [65, 66] increase FP ops by about

50% in the worst case, but have a negligible impact on memory bandwidth. The

expectation would be that noise texture generation performs very well on SIMD or

MIMD hardware since there are no points where the code can diverge. The impact of

a custom functional unit [132] for noise computation on an entire rendering system

would also be an interesting piece of data to gather.

It could be possible to allow the TRaX simulator to change between SIMD and

MIMD on the fly. The simulator even includes basic support for switching SIMDmode

on and off dynamically, or even varying SIMD width at run time, though no testing

has yet been performed. For performance reasons, SIMD should only be switched

on when each of the SIMD blocks is synchronized. SIMD could be switched on right

before a SIMD synchronize to cause the block to synchronize soon after switching to

SIMD mode. It is unlikely for performance to be good in both modes because the

number of execution units that must be provisioned is likely to vary greatly based on

which one is chosen. The experiment could be quite interesting because the shading

phase of ray tracing is very easy to perform in SIMD when there are a small number

of shaders being executed. The primary benefit of dynamic SIMD switching would

be the reduction of width for the fetch and issue stages of the TRaX architecture.

While it may seem counter-intuitive that MIMD can work efficiently in comparison

to the SIMD execution model, most other MIMD systems do not share expen-

sive computational units. In addition, the programming effort required to exploit

parallelism in a SIMT system is quite high. Parallelism can be further increased

104

by allowing the threads to occasionally execute vector instructions, increasing the

burden on the programmer. While automated tools can be developed to ease the

required programming effort, these tools are not yet widely available. In contrast,

the programming effort required to write a ray tracer for a MIMD architecture, such

as the one proposed in this dissertation, is greatly reduced. The programmer can rely

on the hardware to exploit parallelism through the proper use of shared resources.

The TRaX programming model is among the most simple parallel programming

models in existence. It is certainly much simpler than GPGPU models such as CUDA

or OpenCL, which have additional complications and difficulties added in due to their

origin and development process. With TRaX, we set out to keep things as simple as

possible and to only include the features that were necessary for the simple thread

communication model. While the model as it exists for the work presented here is

quite useful, capable and simple to use, there are a couple improvements that would

greatly increase its usability for general purpose applications. In particular, it is more

difficult at present to access objects and data structures in global memory since they

are only loaded and stored through explicit intrinsic operations. This means that the

TRaX C code must encapsulate the access intrinsics with functions to read and write.

Additionally, none of the data structure features of high-level languages like C++ are

directly exposed for global memory in TRaX C.

A simple solution that has not been implemented is to include an option in

the language for “global” or “local” on any of the variable declarations with global

variables requiring explicit pointers for the predefined structures, and perhaps explicit

allocation for those dynamically allocated items. This simple extension to the current

programming model would allow arbitrary parallel code to be recompiled for TRaX,

allowing for simulation on many thousands of simple, throughput-optimized cores.

Power is an important consideration for any integrated circuit design, especially

since all processors hit a wall in power consumption where performance ends up

throttled because of thermal and energy limits on the designs. While GPUs typically

are allowed to consume more power than other circuit designs, especially at the

high end, they are still heavily constrained by power. The results presented in this

dissertation represent a significant energy savings per ray over implementing a ray

105

tracer on either a CPU or a GPU since each consumes power for functionality that

is not necessary in a dedicated ray tracing processor. As detailed in Section 5.2.3,

a rough power analysis shows a high-powered TRaX architecture consumes 83 W,

however, the power number alone does not tell the whole story. To truly compare

any ray tracing implementation against the competition, the real metric of comparison

should be the energy per pixel at some relatively fixed or even level of quality for each

image. In other words, an image should be generated by a rasterizer within some

decibels (dB) of the full path traced solution and profiled for energy consumption.

Then a similar image should be generated with a ray tracer at that same dB from

the path traced solution and profiled for energy. These two numbers would then give

about as fair a comparison as possible for the two techniques, though a wide variety

of scenes of interest should also be included. Unfortunately, this detailed comparison

is outside the scope of this work, but I believe a good hardware design for ray tracing

would be within a 2-5x energy per pixel when given an acceptable closeness to the path

tracing result for future video game scenes. As the chosen comparison point moves

farther from the path traced solution, rasterization is likely to be more efficient, while

ray tracing is likely to be better close to the high-quality end-point.

Hardware companies that look at implementing a chip specifically for ray tracing

may be tempted to add SIMD due to the low cost of including SIMD on top of

a MIMD execution pipeline. An example where SIMD was given even when many

of the target applications may not have desired it is the Larrabee architecture, now

called Xeon Phi [45]. While I believe strongly that MIMD is the best execution model

for ray tracing, and particularly for the traversal stage of the ray tracer, there are well

explored ways of exploiting additional parallelism available if SIMD hardware appears

anyway. In particular, the Embree ray tracing kernels have shown how to effectively

use SIMD to both traverse wide BVHs (where there are more than two children for

each node) and a bundle of relatively coherent rays at a 4-wide parallelism for each on

the Intel Xeon Phi architecture [14, 13, 133]. The inclusion of 16-wide SIMD in Xeon

Phi is likely due to the architecture being designed for a wider variety of applications

than just ray tracing in contrast to the TRaX architecture. The usefulness of SIMD is

a function of the overhead of adding SIMD as compared to the performance increase

106

achievable by adding SIMD-capable software capabilities to the system. Ray tracing

traversal is well documented to have much smaller increases in performance from

including SIMD capabilities than many other graphics and multimedia applications,

so it depends on a low-overhead SIMD implementation to be practical. Since any

commercial architecture designed for ray tracing is likely to also be designed for other

applications that can extract more benefit from SIMD, it is likely that any real ray

tracing application with need to use SIMD in some fashion to optimize performance,

even if it is not the most power-efficient implementation.

REFERENCES

[1] Lux Render. http://www.luxrender.net/en GB/index.

[2] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on gpus,” in
Proc. High Performance Graphics, (New York, NY, USA), pp. 145–149, ACM,
2009.

[3] E. Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, University of Utah, December 1974.

[4] T. Whitted, “An improved illumination model for shaded display,” Communi-
cations of the ACM, vol. 23, no. 6, pp. 343–349, 1980.

[5] A. Glassner, ed., An Introduction to Ray Tracing. London: Academic Press,
1989.

[6] P. Shirley and R. K. Morley, Realistic Ray Tracing. Natick, MA: A. K. Peters,
2003.

[7] D. S. Immel, M. F. Cohen, and D. P. Greenberg, “A radiosity method for
non-diffuse environments,” in Proceedings of SIGGRAPH, pp. 133–142, 1986.

[8] J. T. Kajiya, “The rendering equation,” in Proceedings of SIGGRAPH, pp. 143–
150, 1986.

[9] Khronos Group, “OpenGL - The Industry’s Foundation for High Performance
Graphics.” http://www.opengl.org/.

[10] Microsoft, “DirectX: Advanced Graphics on Windows.” http://msdn.microsoft.
com/en-us/directx/default.aspx.

[11] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R) Pro-
gramming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th
Edition). Addison-Wesley Professional, August 2005.

[12] G. Riguer and B. Bennett, “Mantle: Empowering 3d graphics innovation,”
2013. http://amd-dev.wpengine.netdna-cdn.com/apu/wp-content/uploads/
sites/3/2013/11/GS-4112 Guennadi Riguer-final.pdf.

[13] S. Woop, L. Feng, I. Wald, and C. Benthin, “Embree ray tracing kernels for
cpus and the xeon phi architecture,” in ACM SIGGRAPH 2013 Talks, p. 44,
ACM, 2013.

[14] M. Ernst and S. Woop, “Embree: Photo-realistic ray tracing kernels,” tech.
rep., Intel Corporation, 2011.

108

[15] A. Kensler and P. Shirley, “Optimizing ray-triangle intersection via automated
search,” in Proceedings of the 2006 IEEE Symposium on Interactive Ray Trac-
ing, pp. 33–38, September 2006.

[16] T. Möller and B. Trumbore, “Fast, minimum storage ray triangle intersection,”
Journal of Graphics Tools, vol. 2, pp. 21–28, October 1997.

[17] T. Ize, Efficient Acceleration Structures for Ray Tracing Static and Dynamic
Scenes. PhD thesis, The University of Utah, August 2009.

[18] T. Ize, I. Wald, and S. G. Parker, “Grid creation strategies for efficient ray trac-
ing,” in Proceedings of the 2007 IEEE/Eurographics Symposium on Interactive
Ray Tracing, pp. 27–32, May 2007.

[19] C. Lauterbach, S.-E. Yoon, D. Manocha, and D. Tuft, “RT-DEFORM: Interac-
tive ray tracing of dynamic scenes using BVHs,” in Symposium on Interactive
Ray Tracing (IRT06), pp. 39–46, 2006.

[20] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,
and P. Shirley, “State of the art in ray tracing animated scenes,” Computer
Graphics Forum, 2007.

[21] I. Wald, “On fast construction of SAH based bounding volume hierarchies,” in
Symposium on Interactive Ray Tracing (IRT07), 2007.

[22] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level ray tracing algorithm,”
ACM Transactions on Graphics (SIGGRAPH ’05), vol. 24, no. 3, pp. 1176–
1185, 2005.

[23] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, “Ray tracing animated
scenes using coherent grid traversal,” in Proceedings of the ACM SIGGRAPH
2006 Conference, vol. 25, (New York, NY, USA), pp. 485–493, ACM Press,
2006.

[24] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using dy-
namic bounding volume hierarchies,” ACM Transactions on Graphics, vol. 26,
no. 1, 2007.

[25] T. Ize, I. Wald, C. Robertson, and S. G. Parker, “An evaluation of parallel
grid construction for ray tracing dynamic scenes,” in Proceedings of the 2006
IEEE/Eurographics Symposium on Interactive Ray Tracing, pp. 47–55, 2006.

[26] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX:
a general purpose ray tracing engine,” in ACM SIGGRAPH 2010 Papers,
SIGGRAPH ’10, (New York, NY, USA), pp. 66:1–66:13, ACM, 2010.

[27] NVIDIA, “NVIDIA’s next generation cuda compute architecture: Fermi,”
tech. rep., NVIDIA Corporation, 2009. http://www.nvidia.com/object/fermi
architecture.html.

109

[28] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful: Wavefront
path tracing on gpus,” in Proc. High Performance Graphics, 2013.

[29] C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich, “Ray tracing on the
CELL processor,” in Interactive Ray Tracing IRT06, Sept. 2006.

[30] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in Proceed-
ings of SIGGRAPH, pp. 165–174, 1984.

[31] E. Reinhard, C. Hansen, and S. Parker, “Interactive ray tracing of time vary-
ing data,” in Eurographics Workshop on Parallel Graphics and Visualization,
pp. 77–82, 2002.

[32] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive ray
tracing for isosurface rendering,” in Proceedings of IEEE Visualization, pp. 233–
238, 1998.

[33] W. Martin, P. Shirley, S. Parker, W. Thompson, and E. Reinhard, “Temporally
coherent interactive ray tracing,” Journal of Graphics Tools, vol. 7, no. 2,
pp. 41–48, 2002.

[34] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney, Level of Detail
for 3D Graphics. New York: Elsevier Science Inc., 2002.

[35] H. Gouraud, “Continuous shading of curved surfaces,” IEEE Transactions on
Computers, pp. 623–629, 1972.

[36] B. T. Phong, “Illumination for computer generated pictures,” Communications
of ACM, pp. 311–317, 1975.

[37] J. F. Blinn, “Simulation of wrinkled surfaces,” SIGGRAPH Comput. Graph.,
pp. 286–292, August 1978.

[38] D. P. Greenberg, K. E. Torrance, P. Shirley, J. Arvo, E. Lafortune, J. A.
Ferwerda, B. Walter, B. Trumbore, S. Pattanaik, and S.-C. Foo, “A framework
for realistic image synthesis,” in Proceedings of SIGGRAPH, pp. 477–494, 1997.

[39] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek, “Realtime ray
tracing of dynamic scenes on an FPGA chip,” in Graphics Hardware Conference,
pp. 95–106, August 2004.

[40] S. Woop, J. Schmittler, and P. Slusallek, “RPU: A programmable ray processing
unit for realtime ray tracing,” ACM Transactions on Graphics (SIGGRAPH
’05), vol. 24, July 2005.

[41] J. Günther, S. Popov, H.-P. Seidel, and P. Slusallek, “Realtime ray tracing
on GPU with BVH-based packet traversal,” in Symposium on Interactive Ray
Tracing (IRT07), pp. 113–118, 2007.

[42] M. L. Anido, N. Tabrizi, H. Du, M. Sanchez-Elez, N. Bagherzadeh, et al.,
“Interactive ray tracing using a simd reconfigurable architecture,” in Computer
Architecture and High Performance Computing, 2002. Proceedings. 14th Sym-
posium on, pp. 20–28, IEEE, 2002.

110

[43] H. Du, A. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh, M. Anido, and M. Fer-
nandez, “Interactive ray tracing on reconfigurable simd morphosys,” Design
Automation Conference, 2003. Proceedings of the ASP-DAC 2003. Asia and
South Pacific, pp. 471–476, 21-24 Jan. 2003.

[44] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R. Mark,
“Toward a multicore architecture for real-time ray-tracing,” in IEEE/ACM
Micro ’08, October 2008.

[45] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: A many-core x86 architecture for visual computing,”
ACM Transactions on Graphics, vol. 27, August 2008.

[46] D. Kopta, J. Spjut, E. Brunvand, and S. Parker, “Comparing incoherent ray
performance of TRaX vs. Manta,” in Interactve Ray Tracing IRT08, August
2008.

[47] J. Spjut, D. Kopta, S. Boulos, S. Kellis, and E. Brunvand, “TRaX: A multi-
threaded architecture for real-time ray tracing,” in 6th IEEE Symposium on
Application Specific Processors (SASP), June 2008.

[48] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: A multicore hardware
architecture for real-time ray tracing,” IEEE Transactions on Computer-Aided
Design, vol. 28, no. 12, pp. 1802 – 1815, 2009.

[49] D. Kopta, J. Spjut, E. Brunvand, and A. Davis, “Efficient MIMD architec-
tures for high-performance ray tracing,” in IEEE International Conference on
Computer Design (ICCD), 2010.

[50] J. Spjut, D. Kopta, E. Brunvand, and A. Davis, “A mobile accelerator archi-
tecture for ray tracing,” in 3rd Workshop on SoCs, Heterogeneous Architectures
and Workloads (SHAW-3), 2012.

[51] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “An energy and
bandwidth efficient ray tracing architecture,” in High-Performance Graphics
(HPG 2013), 2013.

[52] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “Memory con-
siderations for low-energy ray tracing,” Computer Graphics Forum, 2014. To
Appear.

[53] S. Inc., “Synopsys design ware and design compiler.” http://www.synopsys.
com.

[54] “Artisan cmos standard cells.” ARM Ltd. http://www.arm.com/products/
physicalip/standardcell.html.

[55] D. Burger and T. Austin, “The Simplescalar toolset, Version 2.0,” tech. rep.,
University of Wisconsin-Madison, June 1997.

111

[56] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley, and
I. Wald, “ Packet-based Whitted and Distribution Ray Tracing,” in Proc.
Graphics Interface, May 2007.

[57] I. Wald, C. Benthin, and S. Boulos, “Getting rid of packets - efficient SIMD
single-ray traversal using multi-branching BVHs,” in Symposium on Interactive
Ray Tracing (IRT08), pp. 49–57, 2008.

[58] M. Ernst and G. Greiner, “Multi bounding volume hierarchies,” in Symposium
on Interactive Ray Tracing (IRT08), pp. 35–40, 2008.

[59] Chris Lattner and Vikram Adve, “The LLVM instruction set and compilation
strategy,” tech. report, CS Dept., Univ. of Illinois at Urbana-Champaign, Aug
2002.

[60] I. Xilinx, Microblaze processor reference guide. 2006.

[61] The RenderMan Interface. http://renderman.pixar.com/products/rispec/
rispec pdf/RISpec3 2.pdf.

[62] P. Shirley, Fundamentals of Computer Graphics. Natick, MA, USA: A. K.
Peters, Ltd., 2002.

[63] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice (2nd ed.). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1990.

[64] J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in
ACM SIGGRAPH Computer Graphics, vol. 11, pp. 192–198, ACM, 1977.

[65] K. Perlin, “An image synthesizer,” ACM SIGGRAPH Computer Graphics,
vol. 19, pp. 287–296, July 1985.

[66] J. C. Hart, “Perlin noise pixel shaders,” in HWWS ’01: Proceedings of the ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, (New York, NY,
USA), pp. 87–94, ACM Press, 2001.

[67] K. Perlin, “Improving noise,” ACM Transactions on Graphics (SIGGRAPH
’02), vol. 21, pp. 681–682, July 2002.

[68] ATI, “ATI products from AMD.” http://ati.amd.com/products/index.html.

[69] NVIDIA Corporation, “Nvidia website.” http://www.nvidia.com.

[70] P. Shirley, K. Sung, E. Brunvand, A. Davis, S. Parker, and S. Boulos, “Rethink-
ing graphics and gaming courses because of fast ray tracing,” in SIGGRAPH
’07: ACM SIGGRAPH 2007 Educators Program, 2007.

[71] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,”
Appl. Opt., vol. 4, no. 7, p. 767, 1965.

112

[72] G. J. Ward, “Measuring and modeling anisotropic reflection,” in SIGGRAPH
’92: Proceedings of the 19th Annual Conference on Computer Graphics and
Interactive Techniques, (New York, NY, USA), pp. 265–272, ACM, 1992.

[73] E. Lafortune and Y. D. Willems, “Bi-directional path-tracing,” in Proceedings
of Compugraphics, (Portugal), pp. 145–153, December 1993.

[74] D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and A. Kensler, “Fast,
effective BVH updates for animated scenes,” in ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (I3D 2012), 2012.

[75] J. Pantaleoni and D. Luebke, “HLBVH: hierarchical LBVH construction for
real-time ray tracing of dynamic geometry,” in High Performance Graphics’10,
pp. 87–95, 2010.

[76] K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and faster hlbvh with
work queues,” in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, pp. 59–64, ACM, 2011.

[77] T. Karras and T. Aila, “Fast parallel construction of high-quality bounding
volume hierarchies,” Proc. High-Performance Graphics, 2013.

[78] S. Woop, E. Brunvand, and P. Slusallak, “Estimating performance of a ray
tracing ASIC design,” in IRT06, September 2006.

[79] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive rendering with
coherent ray tracing,” in Computer Graphics Forum (Proc. Eurographics 2001),
vol. 20, pp. 153–164, 2001.

[80] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel interactive ray
tracing systems,” in Symposium on Interactive Ray Tracing (IRT06), 2006.

[81] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing nuca
organizations and wiring alternatives for large caches with cacti 6.0,” in Pro-
ceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 3–14, IEEE Computer Society, 2007.

[82] S. Bhagwat, “Samsung exynos 5250 begins sampling - mass production in q2
2012.” http://www.anandtech.com/show/5467/.

[83] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “MRTP: Mobile ray tracing processor
with reconfigurable stream multi-processors for high datapath utilization,”
IEEE Journal of Solid-State Circuits, vol. 47, pp. 518–535, feb. 2012.

[84] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “Reconfigurable mobile stream processor
for ray tracing,” in Custom Integrated Circuits Conference (CICC), 2010 IEEE,
September 2010.

[85] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee, H.-S. Park,
and T.-D. Han, “Sgrt: A mobile GPU architecture for real-time ray tracing,”
in Proceedings of the 5th High-Performance Graphics Conference, pp. 109–119,
ACM, 2013.

113

[86] W.-J. Lee, Y. Shin, J. Lee, S. Lee, S. Ryu, and J. Kim, “Real-time ray tracing
on future mobile computing platform,” in SIGGRAPH Asia 2013 Symposium
on Mobile Graphics and Interactive Applications, p. 56, ACM, 2013.

[87] Y. Shin, W.-J. Lee, J. Lee, S.-H. Lee, S. Ryu, and J. Kim, “Energy efficient data
transmission for ray tracing on mobile computing platform,” in SIGGRAPH
Asia 2013 Symposium on Mobile Graphics and Interactive Applications, p. 64,
ACM, 2013.

[88] J. H. Clark, “The geometry engine: A VLSI geometry system for graphics,”
in SIGGRAPH ’82: Proceedings of the 9th Annual Conference on Computer
Graphics and Interactive Techniques, (New York, NY, USA), pp. 127–133, ACM
Press, 1982.

[89] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The triangle
processor and normal vector shader: A VLSI system for high performance
graphics,” in SIGGRAPH ’88: Proceedings of the 15th Annual Conference
on Computer Graphics and Interactive Techniques, (New York, NY, USA),
pp. 21–30, ACM Press, 1988.

[90] H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin, J. Frederick
P. Brooks, J. G. Eyles, and J. Poulton, “Fast spheres, shadows, textures,
transparencies, and imgage enhancements in pixel-planes,” in SIGGRAPH
’85: Proceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, (New York, NY, USA), pp. 111–120, ACM Press, 1985.

[91] J. Poulton, H. Fuchs, J. D. Austin, J. G. Eyles, J. Heineche, C. Hsieh,
J. Goldfeather, J. P. Hultquist, and S. Spach, “PIXEL-PLANES: Building a
VLSI based raster graphics system,” in Chapel Hill Conference on VLSI, 1985.

[92] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing on
programmable graphics hardware,” ACM Transactions on Graphics, vol. 21,
no. 3, pp. 703–712, 2002.

[93] D. Balciunas, L. Dulley, and M. Zuffo, “Gpu-assisted ray casting acceleration
for visualization of large scene data sets,” in Interactive Ray Tracing IRT06,
September 2006.

[94] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified
graphics and computing architecture,” Micro, IEEE, vol. 28, pp. 39–55, March-
April 2008.

[95] NVIDIA CUDA Documentation. http://developer.nvidia.com/object/cuda.
html.

[96] NVIDIA SIGGRAPH Ray Tracing Demo, August 2008. http://developer.
nvidia.com/object/nvision08-IRT.html.

[97] NVIDIA, “NVIDIA GF100: World’s fastest GPU delivering great gaming
performance with true geometric realism,” tech. rep., NVIDIA Corporation,
2009. http://www.nvidia.com/object/GTX 400 architecture.html.

114

[98] NVIDIA G80 Architecture Documentation. http://www.nvidia.com/page/
geforce8.html.

[99] NVIDIA, “GeForce GTX 200 GPU architectural overview,” tech. rep., NVIDIA
Corporation, May 2008.

[100] NVIDIA, “NVIDIA geforce gtx 680,” tech. rep., NVIDIA Corporation,
2012. http://www.geforce.com/Active/en US/en US/pdf/GeForce-GTX-680-
Whitepaper-FINAL.pdf.

[101] NVIDIA, “NVIDIAs next generation CUDA compute architecture: Kepler
tm gk110,” tech. rep., NVIDIA Corporation, 2012. http://www.nvidia.com/
content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

[102] M. Fried, “GPGPU architecture comparison of ATI and NVIDIA GPUs,” tech.
rep., Microway, June 2010. http://microway.com/gpu.html.

[103] R. Smith, “AMD’s radeon HD 6970 and radeon HD 6950: Paving the future
for AMD.” http://www.anandtech.com/show/4061/.

[104] N. Brookwood, “AMD fusion family of APUs: Enabling a superior, immersive
pc experience,” tech. rep., AMD Corporation, 2010. http://www.amd.com/us/
Documents/48423 fusion whitepaper WEB.pdf.

[105] C. Brandrick, “iPhone 4’s retina display explained,” June 2010. PCWorld, http:
//www.pcworld.com/article/198201/iphone 4s retina display explained.html.

[106] Apple Computer, “iPad technical specifications,” 2012. http://www.apple.
com/ipad/specs/.

[107] Samsung, “Galaxy tablet technical specifications,” 2012. http://www.samsung.
com/global/microsite/galaxytab/10.1/spec.html.

[108] NVIDIA, “Bringing high-end graphics to handheld devices,” tech. rep., NVIDIA
Corporation, 2011.

[109] POWERVR, “POWERVR MBX technology overview,” tech. rep., Imagination
Technologies Ltd., May 2009.

[110] D. Koufaty and D. T. Marr, “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23(2), pp. 56–65, March-April 2003.

[111] R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 chip: A dual-core
multithreaded processor,” IEEE Micro, vol. 24(2), pp. 40–47, March-April 2004.

[112] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way Multi-
threaded Sparc Processor,” IEEE Micro, vol. 25(2), pp. 21–29, March-April
2005.

[113] R. M. Russell, “The cray-1 computer system,” Communications of the ACM,
vol. 21, no. 1, pp. 63–72, 1978.

[114] IBM, “The Cell project at IBM research.” http://www.research.ibm.com/cell.

115

[115] H. P. Hofstee, “Power efficient processor architecture and the cell processor,”
in HPCA ’05: Proceedings of the 11th International Symposium on High-
Performance Computer Architecture, 2005.

[116] K. Skaugen, “Petascale to exascale: Extending intel’s hpc commit-
ment,” 2010. http://download.intel.com/pressroom/archive/reference/ISC
2010 Skaugen keynote.pdf.

[117] H. Kobayashi, K. Suzuki, K. Sano, and N. O. ba, “Interactive ray-tracing on
the 3DCGiRAM architecture,” in Proceedings of ACM/IEEE MICRO-35, 2002.

[118] D. Hall, “The AR350: Today’s ray trace rendering processor,” in Proceedings
of the Eurographics/SIGGRAPH workshop on Graphics Hardware - Hot 3D
Session, 2001.

[119] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR – A hardware architecture
for realtime ray-tracing,” in Proceedings of Eurographics Workshop on Graphics
Hardware, 2002. http://graphics.cs.uni-sb.de/Publications.

[120] K. Ramani and C. Gribble, “StreamRay: A stream filtering architecture for
coherent ray tracing,” in ASPLOS ’09, (Washington, D.C.), 2009.

[121] C. Gribble and K. Ramani, “Coherent ray tracing via stream filtering,” in
Symposium on Interactive Ray Tracing (IRT08), 2008.

[122] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Mahesri,
S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An architecture and scalable
programming interface for a 1000-core accelerator,” in ISCA ’09, 2009.

[123] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel, “Cohesion:
A hybrid memory model for accelerators,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10, 2010.

[124] P. J. Lohrmann, “Energy-Efficient Interactive Ray Tracing of Static Scenes on
Programmable Mobile GPUs,” Master’s thesis, Worcester Polytechnic Institute,
February 2007.

[125] C.-H. Chang, P. J. Lohrmann, E. O. Agu, and R. W. Lindeman, “Encore:
Energy-conscious rendering for mobile device,” Proceedings of GPGPU, 2007.

[126] M. Anido, N. Tabrizi, H. Du, M. Sanchez-Elez M, and N. Bagherzadeh,
“Interactive ray tracing using a simd reconfigurable architecture,” in Computer
Architecture and High Performance Computing, 2002. Proceedings. 14th Sym-
posium on, pp. 20 – 28, 2002.

[127] Nicolas Capens, “Advanced rasterization,” September 2004. http://www.
devmaster.net/forums/showthread.php?t=1884.

[128] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian, “SWEL:
Hardware cache coherence protocols to map shared data onto shared caches,”
in Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’10, (New York, NY, USA), pp. 465–476,
ACM, 2010.

116

[129] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA:
near-optimal block placement and replication in distributed caches,” in Pro-
ceedings of ISCA, 2009.

[130] M. K. Qureshi, “Adaptive spill-receive for robust high-performance caching in
CMPs,” in Proceedings of HPCA, 2009.

[131] T. Aila and T. Karras, “Architecture considerations for tracing incoherent
rays,” in Proc. High Performance Graphics, 2010.

[132] J. Spjut, A. Kensler, and E. Brunvand, “Hardware-accelerated gradient noise
for graphics,” in ACM Great Lakes Symposium on VLSI (GLSVLSI), 2009.

[133] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst, “Embree: A kernel
framework for efficient cpu ray tracing,” ACM Transactions on Graphics, 2014.

